commit
0c1a2f8eee
@ -0,0 +1,4 @@
|
||||
__pycache__
|
||||
*.prc
|
||||
|
||||
*.MP4
|
||||
@ -0,0 +1 @@
|
||||
Subproject commit 03b11dd6b5d13a8d4ab069ffeb2a28d4d939575d
|
||||
@ -0,0 +1,3 @@
|
||||
# Deep Sort
|
||||
|
||||
This is the implemention of deep sort with pytorch.
|
||||
@ -0,0 +1,21 @@
|
||||
from .deep_sort import DeepSort
|
||||
|
||||
|
||||
__all__ = ['DeepSort', 'build_tracker']
|
||||
|
||||
|
||||
def build_tracker(cfg, use_cuda):
|
||||
return DeepSort(cfg.DEEPSORT.REID_CKPT,
|
||||
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
||||
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
||||
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=use_cuda)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Binary file not shown.
@ -0,0 +1,15 @@
|
||||
import torch
|
||||
|
||||
features = torch.load("features.pth")
|
||||
qf = features["qf"]
|
||||
ql = features["ql"]
|
||||
gf = features["gf"]
|
||||
gl = features["gl"]
|
||||
|
||||
scores = qf.mm(gf.t())
|
||||
res = scores.topk(5, dim=1)[1][:,0]
|
||||
top1correct = gl[res].eq(ql).sum().item()
|
||||
|
||||
print("Acc top1:{:.3f}".format(top1correct/ql.size(0)))
|
||||
|
||||
|
||||
@ -0,0 +1,55 @@
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import numpy as np
|
||||
import cv2
|
||||
import logging
|
||||
|
||||
from .model import Net
|
||||
|
||||
class Extractor(object):
|
||||
def __init__(self, model_path, use_cuda=True):
|
||||
self.net = Net(reid=True)
|
||||
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
|
||||
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)['net_dict']
|
||||
self.net.load_state_dict(state_dict)
|
||||
logger = logging.getLogger("root.tracker")
|
||||
logger.info("Loading weights from {}... Done!".format(model_path))
|
||||
self.net.to(self.device)
|
||||
self.size = (64, 128)
|
||||
self.norm = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
||||
])
|
||||
|
||||
|
||||
|
||||
def _preprocess(self, im_crops):
|
||||
"""
|
||||
TODO:
|
||||
1. to float with scale from 0 to 1
|
||||
2. resize to (64, 128) as Market1501 dataset did
|
||||
3. concatenate to a numpy array
|
||||
3. to torch Tensor
|
||||
4. normalize
|
||||
"""
|
||||
def _resize(im, size):
|
||||
return cv2.resize(im.astype(np.float32)/255., size)
|
||||
|
||||
im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(0) for im in im_crops], dim=0).float()
|
||||
return im_batch
|
||||
|
||||
|
||||
def __call__(self, im_crops):
|
||||
im_batch = self._preprocess(im_crops)
|
||||
with torch.no_grad():
|
||||
im_batch = im_batch.to(self.device)
|
||||
features = self.net(im_batch)
|
||||
return features.cpu().numpy()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
img = cv2.imread("demo.jpg")[:,:,(2,1,0)]
|
||||
extr = Extractor("checkpoint/ckpt.t7")
|
||||
feature = extr(img)
|
||||
print(feature.shape)
|
||||
|
||||
@ -0,0 +1,104 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
def __init__(self, c_in, c_out,is_downsample=False):
|
||||
super(BasicBlock,self).__init__()
|
||||
self.is_downsample = is_downsample
|
||||
if is_downsample:
|
||||
self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=2, padding=1, bias=False)
|
||||
else:
|
||||
self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(c_out)
|
||||
self.relu = nn.ReLU(True)
|
||||
self.conv2 = nn.Conv2d(c_out,c_out,3,stride=1,padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(c_out)
|
||||
if is_downsample:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
elif c_in != c_out:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
self.is_downsample = True
|
||||
|
||||
def forward(self,x):
|
||||
y = self.conv1(x)
|
||||
y = self.bn1(y)
|
||||
y = self.relu(y)
|
||||
y = self.conv2(y)
|
||||
y = self.bn2(y)
|
||||
if self.is_downsample:
|
||||
x = self.downsample(x)
|
||||
return F.relu(x.add(y),True)
|
||||
|
||||
def make_layers(c_in,c_out,repeat_times, is_downsample=False):
|
||||
blocks = []
|
||||
for i in range(repeat_times):
|
||||
if i ==0:
|
||||
blocks += [BasicBlock(c_in,c_out, is_downsample=is_downsample),]
|
||||
else:
|
||||
blocks += [BasicBlock(c_out,c_out),]
|
||||
return nn.Sequential(*blocks)
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self, num_classes=751 ,reid=False):
|
||||
super(Net,self).__init__()
|
||||
# 3 128 64
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3,64,3,stride=1,padding=1),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.ReLU(inplace=True),
|
||||
# nn.Conv2d(32,32,3,stride=1,padding=1),
|
||||
# nn.BatchNorm2d(32),
|
||||
# nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(3,2,padding=1),
|
||||
)
|
||||
# 32 64 32
|
||||
self.layer1 = make_layers(64,64,2,False)
|
||||
# 32 64 32
|
||||
self.layer2 = make_layers(64,128,2,True)
|
||||
# 64 32 16
|
||||
self.layer3 = make_layers(128,256,2,True)
|
||||
# 128 16 8
|
||||
self.layer4 = make_layers(256,512,2,True)
|
||||
# 256 8 4
|
||||
self.avgpool = nn.AvgPool2d((8,4),1)
|
||||
# 256 1 1
|
||||
self.reid = reid
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(512, 256),
|
||||
nn.BatchNorm1d(256),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Dropout(),
|
||||
nn.Linear(256, num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
x = self.avgpool(x)
|
||||
x = x.view(x.size(0),-1)
|
||||
# B x 128
|
||||
if self.reid:
|
||||
x = x.div(x.norm(p=2,dim=1,keepdim=True))
|
||||
return x
|
||||
# classifier
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = Net()
|
||||
x = torch.randn(4,3,128,64)
|
||||
y = net(x)
|
||||
import ipdb; ipdb.set_trace()
|
||||
|
||||
|
||||
@ -0,0 +1,106 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
def __init__(self, c_in, c_out,is_downsample=False):
|
||||
super(BasicBlock,self).__init__()
|
||||
self.is_downsample = is_downsample
|
||||
if is_downsample:
|
||||
self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=2, padding=1, bias=False)
|
||||
else:
|
||||
self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(c_out)
|
||||
self.relu = nn.ReLU(True)
|
||||
self.conv2 = nn.Conv2d(c_out,c_out,3,stride=1,padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(c_out)
|
||||
if is_downsample:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
elif c_in != c_out:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
|
||||
nn.BatchNorm2d(c_out)
|
||||
)
|
||||
self.is_downsample = True
|
||||
|
||||
def forward(self,x):
|
||||
y = self.conv1(x)
|
||||
y = self.bn1(y)
|
||||
y = self.relu(y)
|
||||
y = self.conv2(y)
|
||||
y = self.bn2(y)
|
||||
if self.is_downsample:
|
||||
x = self.downsample(x)
|
||||
return F.relu(x.add(y),True)
|
||||
|
||||
def make_layers(c_in,c_out,repeat_times, is_downsample=False):
|
||||
blocks = []
|
||||
for i in range(repeat_times):
|
||||
if i ==0:
|
||||
blocks += [BasicBlock(c_in,c_out, is_downsample=is_downsample),]
|
||||
else:
|
||||
blocks += [BasicBlock(c_out,c_out),]
|
||||
return nn.Sequential(*blocks)
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self, num_classes=625 ,reid=False):
|
||||
super(Net,self).__init__()
|
||||
# 3 128 64
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3,32,3,stride=1,padding=1),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ELU(inplace=True),
|
||||
nn.Conv2d(32,32,3,stride=1,padding=1),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ELU(inplace=True),
|
||||
nn.MaxPool2d(3,2,padding=1),
|
||||
)
|
||||
# 32 64 32
|
||||
self.layer1 = make_layers(32,32,2,False)
|
||||
# 32 64 32
|
||||
self.layer2 = make_layers(32,64,2,True)
|
||||
# 64 32 16
|
||||
self.layer3 = make_layers(64,128,2,True)
|
||||
# 128 16 8
|
||||
self.dense = nn.Sequential(
|
||||
nn.Dropout(p=0.6),
|
||||
nn.Linear(128*16*8, 128),
|
||||
nn.BatchNorm1d(128),
|
||||
nn.ELU(inplace=True)
|
||||
)
|
||||
# 256 1 1
|
||||
self.reid = reid
|
||||
self.batch_norm = nn.BatchNorm1d(128)
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(128, num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
|
||||
x = x.view(x.size(0),-1)
|
||||
if self.reid:
|
||||
x = self.dense[0](x)
|
||||
x = self.dense[1](x)
|
||||
x = x.div(x.norm(p=2,dim=1,keepdim=True))
|
||||
return x
|
||||
x = self.dense(x)
|
||||
# B x 128
|
||||
# classifier
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
net = Net(reid=True)
|
||||
x = torch.randn(4,3,128,64)
|
||||
y = net(x)
|
||||
import ipdb; ipdb.set_trace()
|
||||
|
||||
|
||||
@ -0,0 +1,77 @@
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torchvision
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
from model import Net
|
||||
|
||||
parser = argparse.ArgumentParser(description="Train on market1501")
|
||||
parser.add_argument("--data-dir",default='data',type=str)
|
||||
parser.add_argument("--no-cuda",action="store_true")
|
||||
parser.add_argument("--gpu-id",default=0,type=int)
|
||||
args = parser.parse_args()
|
||||
|
||||
# device
|
||||
device = "cuda:{}".format(args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
|
||||
if torch.cuda.is_available() and not args.no_cuda:
|
||||
cudnn.benchmark = True
|
||||
|
||||
# data loader
|
||||
root = args.data_dir
|
||||
query_dir = os.path.join(root,"query")
|
||||
gallery_dir = os.path.join(root,"gallery")
|
||||
transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize((128,64)),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
queryloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(query_dir, transform=transform),
|
||||
batch_size=64, shuffle=False
|
||||
)
|
||||
galleryloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(gallery_dir, transform=transform),
|
||||
batch_size=64, shuffle=False
|
||||
)
|
||||
|
||||
# net definition
|
||||
net = Net(reid=True)
|
||||
assert os.path.isfile("./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
|
||||
print('Loading from checkpoint/ckpt.t7')
|
||||
checkpoint = torch.load("./checkpoint/ckpt.t7")
|
||||
net_dict = checkpoint['net_dict']
|
||||
net.load_state_dict(net_dict, strict=False)
|
||||
net.eval()
|
||||
net.to(device)
|
||||
|
||||
# compute features
|
||||
query_features = torch.tensor([]).float()
|
||||
query_labels = torch.tensor([]).long()
|
||||
gallery_features = torch.tensor([]).float()
|
||||
gallery_labels = torch.tensor([]).long()
|
||||
|
||||
with torch.no_grad():
|
||||
for idx,(inputs,labels) in enumerate(queryloader):
|
||||
inputs = inputs.to(device)
|
||||
features = net(inputs).cpu()
|
||||
query_features = torch.cat((query_features, features), dim=0)
|
||||
query_labels = torch.cat((query_labels, labels))
|
||||
|
||||
for idx,(inputs,labels) in enumerate(galleryloader):
|
||||
inputs = inputs.to(device)
|
||||
features = net(inputs).cpu()
|
||||
gallery_features = torch.cat((gallery_features, features), dim=0)
|
||||
gallery_labels = torch.cat((gallery_labels, labels))
|
||||
|
||||
gallery_labels -= 2
|
||||
|
||||
# save features
|
||||
features = {
|
||||
"qf": query_features,
|
||||
"ql": query_labels,
|
||||
"gf": gallery_features,
|
||||
"gl": gallery_labels
|
||||
}
|
||||
torch.save(features,"features.pth")
|
||||
|
After Width: | Height: | Size: 59 KiB |
@ -0,0 +1,189 @@
|
||||
import argparse
|
||||
import os
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torchvision
|
||||
|
||||
from model import Net
|
||||
|
||||
parser = argparse.ArgumentParser(description="Train on market1501")
|
||||
parser.add_argument("--data-dir",default='data',type=str)
|
||||
parser.add_argument("--no-cuda",action="store_true")
|
||||
parser.add_argument("--gpu-id",default=0,type=int)
|
||||
parser.add_argument("--lr",default=0.1, type=float)
|
||||
parser.add_argument("--interval",'-i',default=20,type=int)
|
||||
parser.add_argument('--resume', '-r',action='store_true')
|
||||
args = parser.parse_args()
|
||||
|
||||
# device
|
||||
device = "cuda:{}".format(args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
|
||||
if torch.cuda.is_available() and not args.no_cuda:
|
||||
cudnn.benchmark = True
|
||||
|
||||
# data loading
|
||||
root = args.data_dir
|
||||
train_dir = os.path.join(root,"train")
|
||||
test_dir = os.path.join(root,"test")
|
||||
transform_train = torchvision.transforms.Compose([
|
||||
torchvision.transforms.RandomCrop((128,64),padding=4),
|
||||
torchvision.transforms.RandomHorizontalFlip(),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
transform_test = torchvision.transforms.Compose([
|
||||
torchvision.transforms.Resize((128,64)),
|
||||
torchvision.transforms.ToTensor(),
|
||||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
trainloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(train_dir, transform=transform_train),
|
||||
batch_size=64,shuffle=True
|
||||
)
|
||||
testloader = torch.utils.data.DataLoader(
|
||||
torchvision.datasets.ImageFolder(test_dir, transform=transform_test),
|
||||
batch_size=64,shuffle=True
|
||||
)
|
||||
num_classes = max(len(trainloader.dataset.classes), len(testloader.dataset.classes))
|
||||
|
||||
# net definition
|
||||
start_epoch = 0
|
||||
net = Net(num_classes=num_classes)
|
||||
if args.resume:
|
||||
assert os.path.isfile("./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
|
||||
print('Loading from checkpoint/ckpt.t7')
|
||||
checkpoint = torch.load("./checkpoint/ckpt.t7")
|
||||
# import ipdb; ipdb.set_trace()
|
||||
net_dict = checkpoint['net_dict']
|
||||
net.load_state_dict(net_dict)
|
||||
best_acc = checkpoint['acc']
|
||||
start_epoch = checkpoint['epoch']
|
||||
net.to(device)
|
||||
|
||||
# loss and optimizer
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(net.parameters(), args.lr, momentum=0.9, weight_decay=5e-4)
|
||||
best_acc = 0.
|
||||
|
||||
# train function for each epoch
|
||||
def train(epoch):
|
||||
print("\nEpoch : %d"%(epoch+1))
|
||||
net.train()
|
||||
training_loss = 0.
|
||||
train_loss = 0.
|
||||
correct = 0
|
||||
total = 0
|
||||
interval = args.interval
|
||||
start = time.time()
|
||||
for idx, (inputs, labels) in enumerate(trainloader):
|
||||
# forward
|
||||
inputs,labels = inputs.to(device),labels.to(device)
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# backward
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# accumurating
|
||||
training_loss += loss.item()
|
||||
train_loss += loss.item()
|
||||
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
|
||||
total += labels.size(0)
|
||||
|
||||
# print
|
||||
if (idx+1)%interval == 0:
|
||||
end = time.time()
|
||||
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
|
||||
100.*(idx+1)/len(trainloader), end-start, training_loss/interval, correct, total, 100.*correct/total
|
||||
))
|
||||
training_loss = 0.
|
||||
start = time.time()
|
||||
|
||||
return train_loss/len(trainloader), 1.- correct/total
|
||||
|
||||
def test(epoch):
|
||||
global best_acc
|
||||
net.eval()
|
||||
test_loss = 0.
|
||||
correct = 0
|
||||
total = 0
|
||||
start = time.time()
|
||||
with torch.no_grad():
|
||||
for idx, (inputs, labels) in enumerate(testloader):
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
test_loss += loss.item()
|
||||
correct += outputs.max(dim=1)[1].eq(labels).sum().item()
|
||||
total += labels.size(0)
|
||||
|
||||
print("Testing ...")
|
||||
end = time.time()
|
||||
print("[progress:{:.1f}%]time:{:.2f}s Loss:{:.5f} Correct:{}/{} Acc:{:.3f}%".format(
|
||||
100.*(idx+1)/len(testloader), end-start, test_loss/len(testloader), correct, total, 100.*correct/total
|
||||
))
|
||||
|
||||
# saving checkpoint
|
||||
acc = 100.*correct/total
|
||||
if acc > best_acc:
|
||||
best_acc = acc
|
||||
print("Saving parameters to checkpoint/ckpt.t7")
|
||||
checkpoint = {
|
||||
'net_dict':net.state_dict(),
|
||||
'acc':acc,
|
||||
'epoch':epoch,
|
||||
}
|
||||
if not os.path.isdir('checkpoint'):
|
||||
os.mkdir('checkpoint')
|
||||
torch.save(checkpoint, './checkpoint/ckpt.t7')
|
||||
|
||||
return test_loss/len(testloader), 1.- correct/total
|
||||
|
||||
# plot figure
|
||||
x_epoch = []
|
||||
record = {'train_loss':[], 'train_err':[], 'test_loss':[], 'test_err':[]}
|
||||
fig = plt.figure()
|
||||
ax0 = fig.add_subplot(121, title="loss")
|
||||
ax1 = fig.add_subplot(122, title="top1err")
|
||||
def draw_curve(epoch, train_loss, train_err, test_loss, test_err):
|
||||
global record
|
||||
record['train_loss'].append(train_loss)
|
||||
record['train_err'].append(train_err)
|
||||
record['test_loss'].append(test_loss)
|
||||
record['test_err'].append(test_err)
|
||||
|
||||
x_epoch.append(epoch)
|
||||
ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train')
|
||||
ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val')
|
||||
ax1.plot(x_epoch, record['train_err'], 'bo-', label='train')
|
||||
ax1.plot(x_epoch, record['test_err'], 'ro-', label='val')
|
||||
if epoch == 0:
|
||||
ax0.legend()
|
||||
ax1.legend()
|
||||
fig.savefig("train.jpg")
|
||||
|
||||
# lr decay
|
||||
def lr_decay():
|
||||
global optimizer
|
||||
for params in optimizer.param_groups:
|
||||
params['lr'] *= 0.1
|
||||
lr = params['lr']
|
||||
print("Learning rate adjusted to {}".format(lr))
|
||||
|
||||
def main():
|
||||
for epoch in range(start_epoch, start_epoch+40):
|
||||
train_loss, train_err = train(epoch)
|
||||
test_loss, test_err = test(epoch)
|
||||
draw_curve(epoch, train_loss, train_err, test_loss, test_err)
|
||||
if (epoch+1)%20==0:
|
||||
lr_decay()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@ -0,0 +1,120 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from .deep.feature_extractor import Extractor
|
||||
from .sort.nn_matching import NearestNeighborDistanceMetric
|
||||
from .sort.preprocessing import non_max_suppression
|
||||
from .sort.detection import Detection
|
||||
from .sort.tracker import Tracker
|
||||
|
||||
|
||||
__all__ = ['DeepSort']
|
||||
|
||||
|
||||
class DeepSort(object):
|
||||
def __init__(self, model_path, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7,
|
||||
max_age=70, n_init=3, nn_budget=100, use_cuda=True,enable_reid=True):
|
||||
self.min_confidence = min_confidence
|
||||
self.nms_max_overlap = nms_max_overlap
|
||||
self.enable_reid = enable_reid
|
||||
if self.enable_reid:
|
||||
self.extractor = Extractor(model_path, use_cuda=use_cuda)
|
||||
else:
|
||||
self.extractor = None
|
||||
|
||||
max_cosine_distance = max_dist
|
||||
nn_budget = 100
|
||||
metric = NearestNeighborDistanceMetric(
|
||||
"cosine", max_cosine_distance, nn_budget)
|
||||
self.tracker = Tracker(
|
||||
metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
|
||||
|
||||
def update(self, bbox_xywh, confidences, clss, ori_img):
|
||||
self.height, self.width = ori_img.shape[:2]
|
||||
# generate detections
|
||||
#features = self._get_features(bbox_xywh, ori_img)
|
||||
# 根据开关决定是否提取特征
|
||||
if self.enable_reid:
|
||||
features = self._get_features(bbox_xywh, ori_img)
|
||||
else:
|
||||
# 创建空特征或随机特征(用于占位)
|
||||
features = [np.zeros(512) for _ in range(len(bbox_xywh))] # 假设特征维度是128
|
||||
|
||||
bbox_tlwh = self._xywh_to_tlwh(bbox_xywh)
|
||||
detections = [Detection(bbox_tlwh[i], clss[i], conf, features[i]) for i, conf in enumerate(
|
||||
confidences) if conf > self.min_confidence]
|
||||
# update tracker
|
||||
self.tracker.predict()
|
||||
self.tracker.update(detections)
|
||||
|
||||
# output bbox identities
|
||||
outputs = []
|
||||
for track in self.tracker.tracks:
|
||||
if not track.is_confirmed() or track.time_since_update > 1:
|
||||
continue
|
||||
box = track.to_tlwh()
|
||||
x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
|
||||
outputs.append((x1, y1, x2, y2, track.cls_, track.track_id))
|
||||
return outputs
|
||||
|
||||
@staticmethod
|
||||
def _xywh_to_tlwh(bbox_xywh):
|
||||
if isinstance(bbox_xywh, np.ndarray):
|
||||
bbox_tlwh = bbox_xywh.copy()
|
||||
elif isinstance(bbox_xywh, torch.Tensor):
|
||||
bbox_tlwh = bbox_xywh.clone()
|
||||
if bbox_tlwh.size(0) > 0:
|
||||
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2]/2.
|
||||
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3]/2.
|
||||
return bbox_tlwh
|
||||
|
||||
def _xywh_to_xyxy(self, bbox_xywh):
|
||||
x, y, w, h = bbox_xywh
|
||||
x1 = max(int(x-w/2), 0)
|
||||
x2 = min(int(x+w/2), self.width-1)
|
||||
y1 = max(int(y-h/2), 0)
|
||||
y2 = min(int(y+h/2), self.height-1)
|
||||
return x1, y1, x2, y2
|
||||
|
||||
def _tlwh_to_xyxy(self, bbox_tlwh):
|
||||
"""
|
||||
TODO:
|
||||
Convert bbox from xtl_ytl_w_h to xc_yc_w_h
|
||||
Thanks JieChen91@github.com for reporting this bug!
|
||||
"""
|
||||
x, y, w, h = bbox_tlwh
|
||||
x1 = max(int(x), 0)
|
||||
x2 = min(int(x+w), self.width-1)
|
||||
y1 = max(int(y), 0)
|
||||
y2 = min(int(y+h), self.height-1)
|
||||
return x1, y1, x2, y2
|
||||
|
||||
def _xyxy_to_tlwh(self, bbox_xyxy):
|
||||
x1, y1, x2, y2 = bbox_xyxy
|
||||
|
||||
t = x1
|
||||
l = y1
|
||||
w = int(x2-x1)
|
||||
h = int(y2-y1)
|
||||
return t, l, w, h
|
||||
|
||||
def _get_features(self, bbox_xywh, ori_img):
|
||||
im_crops = []
|
||||
for box in bbox_xywh:
|
||||
x1, y1, x2, y2 = self._xywh_to_xyxy(box)
|
||||
im = ori_img[y1:y2, x1:x2]
|
||||
im_crops.append(im)
|
||||
if im_crops:
|
||||
features = self.extractor(im_crops)
|
||||
else:
|
||||
features = np.array([])
|
||||
return features
|
||||
|
||||
def lock_point(self,point):
|
||||
pass
|
||||
|
||||
def lock_rect(self,rect):
|
||||
pass
|
||||
|
||||
def lock_id(self,id):
|
||||
pass
|
||||
@ -0,0 +1,28 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Detection(object):
|
||||
|
||||
def __init__(self, tlwh, cls_, confidence, feature):
|
||||
self.tlwh = np.asarray(tlwh, dtype=np.float32)
|
||||
self.cls_ = cls_
|
||||
self.confidence = float(confidence)
|
||||
self.feature = np.asarray(feature, dtype=np.float32)
|
||||
|
||||
def to_tlbr(self):
|
||||
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
||||
`(top left, bottom right)`.
|
||||
"""
|
||||
ret = self.tlwh.copy()
|
||||
ret[2:] += ret[:2]
|
||||
return ret
|
||||
|
||||
def to_xyah(self):
|
||||
"""Convert bounding box to format `(center x, center y, aspect ratio,
|
||||
height)`, where the aspect ratio is `width / height`.
|
||||
"""
|
||||
ret = self.tlwh.copy()
|
||||
ret[:2] += ret[2:] / 2
|
||||
ret[2] /= ret[3]
|
||||
return ret
|
||||
@ -0,0 +1,82 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
from __future__ import absolute_import
|
||||
import numpy as np
|
||||
from . import linear_assignment
|
||||
|
||||
|
||||
def iou(bbox, candidates):
|
||||
"""Computer intersection over union.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bbox : ndarray
|
||||
A bounding box in format `(top left x, top left y, width, height)`.
|
||||
candidates : ndarray
|
||||
A matrix of candidate bounding boxes (one per row) in the same format
|
||||
as `bbox`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
The intersection over union in [0, 1] between the `bbox` and each
|
||||
candidate. A higher score means a larger fraction of the `bbox` is
|
||||
occluded by the candidate.
|
||||
|
||||
"""
|
||||
bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:]
|
||||
candidates_tl = candidates[:, :2]
|
||||
candidates_br = candidates[:, :2] + candidates[:, 2:]
|
||||
|
||||
tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis],
|
||||
np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]]
|
||||
br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis],
|
||||
np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]]
|
||||
wh = np.maximum(0., br - tl)
|
||||
|
||||
area_intersection = wh.prod(axis=1)
|
||||
area_bbox = bbox[2:].prod()
|
||||
area_candidates = candidates[:, 2:].prod(axis=1)
|
||||
return area_intersection / (area_bbox + area_candidates - area_intersection)
|
||||
|
||||
|
||||
def iou_cost(tracks, detections, track_indices=None,
|
||||
detection_indices=None):
|
||||
"""An intersection over union distance metric.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tracks : List[deep_sort.track.Track]
|
||||
A list of tracks.
|
||||
detections : List[deep_sort.detection.Detection]
|
||||
A list of detections.
|
||||
track_indices : Optional[List[int]]
|
||||
A list of indices to tracks that should be matched. Defaults to
|
||||
all `tracks`.
|
||||
detection_indices : Optional[List[int]]
|
||||
A list of indices to detections that should be matched. Defaults
|
||||
to all `detections`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a cost matrix of shape
|
||||
len(track_indices), len(detection_indices) where entry (i, j) is
|
||||
`1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`.
|
||||
|
||||
"""
|
||||
if track_indices is None:
|
||||
track_indices = np.arange(len(tracks))
|
||||
if detection_indices is None:
|
||||
detection_indices = np.arange(len(detections))
|
||||
|
||||
cost_matrix = np.zeros((len(track_indices), len(detection_indices)))
|
||||
for row, track_idx in enumerate(track_indices):
|
||||
if tracks[track_idx].time_since_update > 1:
|
||||
cost_matrix[row, :] = linear_assignment.INFTY_COST
|
||||
continue
|
||||
|
||||
bbox = tracks[track_idx].to_tlwh()
|
||||
candidates = np.asarray([detections[i].tlwh for i in detection_indices])
|
||||
cost_matrix[row, :] = 1. - iou(bbox, candidates)
|
||||
|
||||
return cost_matrix
|
||||
@ -0,0 +1,229 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
import scipy.linalg
|
||||
|
||||
|
||||
"""
|
||||
Table for the 0.95 quantile of the chi-square distribution with N degrees of
|
||||
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
|
||||
function and used as Mahalanobis gating threshold.
|
||||
"""
|
||||
chi2inv95 = {
|
||||
1: 3.8415,
|
||||
2: 5.9915,
|
||||
3: 7.8147,
|
||||
4: 9.4877,
|
||||
5: 11.070,
|
||||
6: 12.592,
|
||||
7: 14.067,
|
||||
8: 15.507,
|
||||
9: 16.919}
|
||||
|
||||
|
||||
class KalmanFilter(object):
|
||||
"""
|
||||
A simple Kalman filter for tracking bounding boxes in image space.
|
||||
|
||||
The 8-dimensional state space
|
||||
|
||||
x, y, a, h, vx, vy, va, vh
|
||||
|
||||
contains the bounding box center position (x, y), aspect ratio a, height h,
|
||||
and their respective velocities.
|
||||
|
||||
Object motion follows a constant velocity model. The bounding box location
|
||||
(x, y, a, h) is taken as direct observation of the state space (linear
|
||||
observation model).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
ndim, dt = 4, 1.
|
||||
|
||||
# Create Kalman filter model matrices.
|
||||
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
||||
for i in range(ndim):
|
||||
self._motion_mat[i, ndim + i] = dt
|
||||
self._update_mat = np.eye(ndim, 2 * ndim)
|
||||
|
||||
# Motion and observation uncertainty are chosen relative to the current
|
||||
# state estimate. These weights control the amount of uncertainty in
|
||||
# the model. This is a bit hacky.
|
||||
self._std_weight_position = 1. / 20
|
||||
self._std_weight_velocity = 1. / 160
|
||||
|
||||
def initiate(self, measurement):
|
||||
"""Create track from unassociated measurement.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
measurement : ndarray
|
||||
Bounding box coordinates (x, y, a, h) with center position (x, y),
|
||||
aspect ratio a, and height h.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
||||
dimensional) of the new track. Unobserved velocities are initialized
|
||||
to 0 mean.
|
||||
|
||||
"""
|
||||
mean_pos = measurement
|
||||
mean_vel = np.zeros_like(mean_pos)
|
||||
mean = np.r_[mean_pos, mean_vel]
|
||||
|
||||
std = [
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
1e-2,
|
||||
2 * self._std_weight_position * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
10 * self._std_weight_velocity * measurement[3],
|
||||
1e-5,
|
||||
10 * self._std_weight_velocity * measurement[3]]
|
||||
covariance = np.diag(np.square(std))
|
||||
return mean, covariance
|
||||
|
||||
def predict(self, mean, covariance):
|
||||
"""Run Kalman filter prediction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The 8 dimensional mean vector of the object state at the previous
|
||||
time step.
|
||||
covariance : ndarray
|
||||
The 8x8 dimensional covariance matrix of the object state at the
|
||||
previous time step.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the mean vector and covariance matrix of the predicted
|
||||
state. Unobserved velocities are initialized to 0 mean.
|
||||
|
||||
"""
|
||||
std_pos = [
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-2,
|
||||
self._std_weight_position * mean[3]]
|
||||
std_vel = [
|
||||
self._std_weight_velocity * mean[3],
|
||||
self._std_weight_velocity * mean[3],
|
||||
1e-5,
|
||||
self._std_weight_velocity * mean[3]]
|
||||
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
||||
|
||||
mean = np.dot(self._motion_mat, mean)
|
||||
covariance = np.linalg.multi_dot((
|
||||
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
||||
|
||||
return mean, covariance
|
||||
|
||||
def project(self, mean, covariance):
|
||||
"""Project state distribution to measurement space.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The state's mean vector (8 dimensional array).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the projected mean and covariance matrix of the given state
|
||||
estimate.
|
||||
|
||||
"""
|
||||
std = [
|
||||
self._std_weight_position * mean[3],
|
||||
self._std_weight_position * mean[3],
|
||||
1e-1,
|
||||
self._std_weight_position * mean[3]]
|
||||
innovation_cov = np.diag(np.square(std))
|
||||
|
||||
mean = np.dot(self._update_mat, mean)
|
||||
covariance = np.linalg.multi_dot((
|
||||
self._update_mat, covariance, self._update_mat.T))
|
||||
return mean, covariance + innovation_cov
|
||||
|
||||
def update(self, mean, covariance, measurement):
|
||||
"""Run Kalman filter correction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
The predicted state's mean vector (8 dimensional).
|
||||
covariance : ndarray
|
||||
The state's covariance matrix (8x8 dimensional).
|
||||
measurement : ndarray
|
||||
The 4 dimensional measurement vector (x, y, a, h), where (x, y)
|
||||
is the center position, a the aspect ratio, and h the height of the
|
||||
bounding box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(ndarray, ndarray)
|
||||
Returns the measurement-corrected state distribution.
|
||||
|
||||
"""
|
||||
projected_mean, projected_cov = self.project(mean, covariance)
|
||||
|
||||
chol_factor, lower = scipy.linalg.cho_factor(
|
||||
projected_cov, lower=True, check_finite=False)
|
||||
kalman_gain = scipy.linalg.cho_solve(
|
||||
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
|
||||
check_finite=False).T
|
||||
innovation = measurement - projected_mean
|
||||
|
||||
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
||||
new_covariance = covariance - np.linalg.multi_dot((
|
||||
kalman_gain, projected_cov, kalman_gain.T))
|
||||
return new_mean, new_covariance
|
||||
|
||||
def gating_distance(self, mean, covariance, measurements,
|
||||
only_position=False):
|
||||
"""Compute gating distance between state distribution and measurements.
|
||||
|
||||
A suitable distance threshold can be obtained from `chi2inv95`. If
|
||||
`only_position` is False, the chi-square distribution has 4 degrees of
|
||||
freedom, otherwise 2.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector over the state distribution (8 dimensional).
|
||||
covariance : ndarray
|
||||
Covariance of the state distribution (8x8 dimensional).
|
||||
measurements : ndarray
|
||||
An Nx4 dimensional matrix of N measurements, each in
|
||||
format (x, y, a, h) where (x, y) is the bounding box center
|
||||
position, a the aspect ratio, and h the height.
|
||||
only_position : Optional[bool]
|
||||
If True, distance computation is done with respect to the bounding
|
||||
box center position only.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns an array of length N, where the i-th element contains the
|
||||
squared Mahalanobis distance between (mean, covariance) and
|
||||
`measurements[i]`.
|
||||
|
||||
"""
|
||||
mean, covariance = self.project(mean, covariance)
|
||||
if only_position:
|
||||
mean, covariance = mean[:2], covariance[:2, :2]
|
||||
measurements = measurements[:, :2]
|
||||
|
||||
cholesky_factor = np.linalg.cholesky(covariance)
|
||||
d = measurements - mean
|
||||
z = scipy.linalg.solve_triangular(
|
||||
cholesky_factor, d.T, lower=True, check_finite=False,
|
||||
overwrite_b=True)
|
||||
squared_maha = np.sum(z * z, axis=0)
|
||||
return squared_maha
|
||||
@ -0,0 +1,159 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
from __future__ import absolute_import
|
||||
import numpy as np
|
||||
# from sklearn.utils.linear_assignment_ import linear_assignment
|
||||
from scipy.optimize import linear_sum_assignment as linear_assignment
|
||||
from . import kalman_filter
|
||||
|
||||
|
||||
INFTY_COST = 1e+5
|
||||
|
||||
|
||||
def min_cost_matching(
|
||||
distance_metric, max_distance, tracks, detections, track_indices=None,
|
||||
detection_indices=None):
|
||||
if track_indices is None:
|
||||
track_indices = np.arange(len(tracks))
|
||||
if detection_indices is None:
|
||||
detection_indices = np.arange(len(detections))
|
||||
|
||||
if len(detection_indices) == 0 or len(track_indices) == 0:
|
||||
return [], track_indices, detection_indices # Nothing to match.
|
||||
|
||||
cost_matrix = distance_metric(
|
||||
tracks, detections, track_indices, detection_indices)
|
||||
cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5
|
||||
|
||||
row_indices, col_indices = linear_assignment(cost_matrix)
|
||||
|
||||
matches, unmatched_tracks, unmatched_detections = [], [], []
|
||||
for col, detection_idx in enumerate(detection_indices):
|
||||
if col not in col_indices:
|
||||
unmatched_detections.append(detection_idx)
|
||||
for row, track_idx in enumerate(track_indices):
|
||||
if row not in row_indices:
|
||||
unmatched_tracks.append(track_idx)
|
||||
for row, col in zip(row_indices, col_indices):
|
||||
track_idx = track_indices[row]
|
||||
detection_idx = detection_indices[col]
|
||||
if cost_matrix[row, col] > max_distance:
|
||||
unmatched_tracks.append(track_idx)
|
||||
unmatched_detections.append(detection_idx)
|
||||
else:
|
||||
matches.append((track_idx, detection_idx))
|
||||
return matches, unmatched_tracks, unmatched_detections
|
||||
|
||||
|
||||
def matching_cascade(
|
||||
distance_metric, max_distance, cascade_depth, tracks, detections,
|
||||
track_indices=None, detection_indices=None):
|
||||
"""Run matching cascade.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
|
||||
The distance metric is given a list of tracks and detections as well as
|
||||
a list of N track indices and M detection indices. The metric should
|
||||
return the NxM dimensional cost matrix, where element (i, j) is the
|
||||
association cost between the i-th track in the given track indices and
|
||||
the j-th detection in the given detection indices.
|
||||
max_distance : float
|
||||
Gating threshold. Associations with cost larger than this value are
|
||||
disregarded.
|
||||
cascade_depth: int
|
||||
The cascade depth, should be se to the maximum track age.
|
||||
tracks : List[track.Track]
|
||||
A list of predicted tracks at the current time step.
|
||||
detections : List[detection.Detection]
|
||||
A list of detections at the current time step.
|
||||
track_indices : Optional[List[int]]
|
||||
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||
`tracks` (see description above). Defaults to all tracks.
|
||||
detection_indices : Optional[List[int]]
|
||||
List of detection indices that maps columns in `cost_matrix` to
|
||||
detections in `detections` (see description above). Defaults to all
|
||||
detections.
|
||||
|
||||
Returns
|
||||
-------
|
||||
(List[(int, int)], List[int], List[int])
|
||||
Returns a tuple with the following three entries:
|
||||
* A list of matched track and detection indices.
|
||||
* A list of unmatched track indices.
|
||||
* A list of unmatched detection indices.
|
||||
|
||||
"""
|
||||
if track_indices is None:
|
||||
track_indices = list(range(len(tracks)))
|
||||
if detection_indices is None:
|
||||
detection_indices = list(range(len(detections)))
|
||||
|
||||
unmatched_detections = detection_indices
|
||||
matches = []
|
||||
for level in range(cascade_depth):
|
||||
if len(unmatched_detections) == 0: # No detections left
|
||||
break
|
||||
|
||||
track_indices_l = [
|
||||
k for k in track_indices
|
||||
if tracks[k].time_since_update == 1 + level
|
||||
]
|
||||
if len(track_indices_l) == 0: # Nothing to match at this level
|
||||
continue
|
||||
|
||||
matches_l, _, unmatched_detections = \
|
||||
min_cost_matching(
|
||||
distance_metric, max_distance, tracks, detections,
|
||||
track_indices_l, unmatched_detections)
|
||||
matches += matches_l
|
||||
unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches))
|
||||
return matches, unmatched_tracks, unmatched_detections
|
||||
|
||||
|
||||
def gate_cost_matrix(
|
||||
kf, cost_matrix, tracks, detections, track_indices, detection_indices,
|
||||
gated_cost=INFTY_COST, only_position=False):
|
||||
"""Invalidate infeasible entries in cost matrix based on the state
|
||||
distributions obtained by Kalman filtering.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kf : The Kalman filter.
|
||||
cost_matrix : ndarray
|
||||
The NxM dimensional cost matrix, where N is the number of track indices
|
||||
and M is the number of detection indices, such that entry (i, j) is the
|
||||
association cost between `tracks[track_indices[i]]` and
|
||||
`detections[detection_indices[j]]`.
|
||||
tracks : List[track.Track]
|
||||
A list of predicted tracks at the current time step.
|
||||
detections : List[detection.Detection]
|
||||
A list of detections at the current time step.
|
||||
track_indices : List[int]
|
||||
List of track indices that maps rows in `cost_matrix` to tracks in
|
||||
`tracks` (see description above).
|
||||
detection_indices : List[int]
|
||||
List of detection indices that maps columns in `cost_matrix` to
|
||||
detections in `detections` (see description above).
|
||||
gated_cost : Optional[float]
|
||||
Entries in the cost matrix corresponding to infeasible associations are
|
||||
set this value. Defaults to a very large value.
|
||||
only_position : Optional[bool]
|
||||
If True, only the x, y position of the state distribution is considered
|
||||
during gating. Defaults to False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns the modified cost matrix.
|
||||
|
||||
"""
|
||||
gating_dim = 2 if only_position else 4
|
||||
gating_threshold = kalman_filter.chi2inv95[gating_dim]
|
||||
measurements = np.asarray(
|
||||
[detections[i].to_xyah() for i in detection_indices])
|
||||
for row, track_idx in enumerate(track_indices):
|
||||
track = tracks[track_idx]
|
||||
gating_distance = kf.gating_distance(
|
||||
track.mean, track.covariance, measurements, only_position)
|
||||
cost_matrix[row, gating_distance > gating_threshold] = gated_cost
|
||||
return cost_matrix
|
||||
@ -0,0 +1,177 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _pdist(a, b):
|
||||
"""Compute pair-wise squared distance between points in `a` and `b`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
An NxM matrix of N samples of dimensionality M.
|
||||
b : array_like
|
||||
An LxM matrix of L samples of dimensionality M.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a matrix of size len(a), len(b) such that eleement (i, j)
|
||||
contains the squared distance between `a[i]` and `b[j]`.
|
||||
|
||||
"""
|
||||
a, b = np.asarray(a), np.asarray(b)
|
||||
if len(a) == 0 or len(b) == 0:
|
||||
return np.zeros((len(a), len(b)))
|
||||
a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
|
||||
r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
|
||||
r2 = np.clip(r2, 0., float(np.inf))
|
||||
return r2
|
||||
|
||||
|
||||
def _cosine_distance(a, b, data_is_normalized=False):
|
||||
"""Compute pair-wise cosine distance between points in `a` and `b`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
An NxM matrix of N samples of dimensionality M.
|
||||
b : array_like
|
||||
An LxM matrix of L samples of dimensionality M.
|
||||
data_is_normalized : Optional[bool]
|
||||
If True, assumes rows in a and b are unit length vectors.
|
||||
Otherwise, a and b are explicitly normalized to lenght 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a matrix of size len(a), len(b) such that eleement (i, j)
|
||||
contains the squared distance between `a[i]` and `b[j]`.
|
||||
|
||||
"""
|
||||
if not data_is_normalized:
|
||||
a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
|
||||
b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
|
||||
return 1. - np.dot(a, b.T)
|
||||
|
||||
|
||||
def _nn_euclidean_distance(x, y):
|
||||
""" Helper function for nearest neighbor distance metric (Euclidean).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : ndarray
|
||||
A matrix of N row-vectors (sample points).
|
||||
y : ndarray
|
||||
A matrix of M row-vectors (query points).
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
A vector of length M that contains for each entry in `y` the
|
||||
smallest Euclidean distance to a sample in `x`.
|
||||
|
||||
"""
|
||||
distances = _pdist(x, y)
|
||||
return np.maximum(0.0, distances.min(axis=0))
|
||||
|
||||
|
||||
def _nn_cosine_distance(x, y):
|
||||
""" Helper function for nearest neighbor distance metric (cosine).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : ndarray
|
||||
A matrix of N row-vectors (sample points).
|
||||
y : ndarray
|
||||
A matrix of M row-vectors (query points).
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
A vector of length M that contains for each entry in `y` the
|
||||
smallest cosine distance to a sample in `x`.
|
||||
|
||||
"""
|
||||
distances = _cosine_distance(x, y)
|
||||
return distances.min(axis=0)
|
||||
|
||||
|
||||
class NearestNeighborDistanceMetric(object):
|
||||
"""
|
||||
A nearest neighbor distance metric that, for each target, returns
|
||||
the closest distance to any sample that has been observed so far.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
metric : str
|
||||
Either "euclidean" or "cosine".
|
||||
matching_threshold: float
|
||||
The matching threshold. Samples with larger distance are considered an
|
||||
invalid match.
|
||||
budget : Optional[int]
|
||||
If not None, fix samples per class to at most this number. Removes
|
||||
the oldest samples when the budget is reached.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
samples : Dict[int -> List[ndarray]]
|
||||
A dictionary that maps from target identities to the list of samples
|
||||
that have been observed so far.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, metric, matching_threshold, budget=None):
|
||||
|
||||
|
||||
if metric == "euclidean":
|
||||
self._metric = _nn_euclidean_distance
|
||||
elif metric == "cosine":
|
||||
self._metric = _nn_cosine_distance
|
||||
else:
|
||||
raise ValueError(
|
||||
"Invalid metric; must be either 'euclidean' or 'cosine'")
|
||||
self.matching_threshold = matching_threshold
|
||||
self.budget = budget
|
||||
self.samples = {}
|
||||
|
||||
def partial_fit(self, features, targets, active_targets):
|
||||
"""Update the distance metric with new data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
features : ndarray
|
||||
An NxM matrix of N features of dimensionality M.
|
||||
targets : ndarray
|
||||
An integer array of associated target identities.
|
||||
active_targets : List[int]
|
||||
A list of targets that are currently present in the scene.
|
||||
|
||||
"""
|
||||
for feature, target in zip(features, targets):
|
||||
self.samples.setdefault(target, []).append(feature)
|
||||
if self.budget is not None:
|
||||
self.samples[target] = self.samples[target][-self.budget:]
|
||||
self.samples = {k: self.samples[k] for k in active_targets}
|
||||
|
||||
def distance(self, features, targets):
|
||||
"""Compute distance between features and targets.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
features : ndarray
|
||||
An NxM matrix of N features of dimensionality M.
|
||||
targets : List[int]
|
||||
A list of targets to match the given `features` against.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
Returns a cost matrix of shape len(targets), len(features), where
|
||||
element (i, j) contains the closest squared distance between
|
||||
`targets[i]` and `features[j]`.
|
||||
|
||||
"""
|
||||
cost_matrix = np.zeros((len(targets), len(features)))
|
||||
for i, target in enumerate(targets):
|
||||
cost_matrix[i, :] = self._metric(self.samples[target], features)
|
||||
return cost_matrix
|
||||
@ -0,0 +1,73 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
def non_max_suppression(boxes, max_bbox_overlap, scores=None):
|
||||
"""Suppress overlapping detections.
|
||||
|
||||
Original code from [1]_ has been adapted to include confidence score.
|
||||
|
||||
.. [1] http://www.pyimagesearch.com/2015/02/16/
|
||||
faster-non-maximum-suppression-python/
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> boxes = [d.roi for d in detections]
|
||||
>>> scores = [d.confidence for d in detections]
|
||||
>>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)
|
||||
>>> detections = [detections[i] for i in indices]
|
||||
|
||||
Parameters
|
||||
----------
|
||||
boxes : ndarray
|
||||
Array of ROIs (x, y, width, height).
|
||||
max_bbox_overlap : float
|
||||
ROIs that overlap more than this values are suppressed.
|
||||
scores : Optional[array_like]
|
||||
Detector confidence score.
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[int]
|
||||
Returns indices of detections that have survived non-maxima suppression.
|
||||
|
||||
"""
|
||||
if len(boxes) == 0:
|
||||
return []
|
||||
|
||||
boxes = boxes.astype(np.float)
|
||||
pick = []
|
||||
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2] + boxes[:, 0]
|
||||
y2 = boxes[:, 3] + boxes[:, 1]
|
||||
|
||||
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
if scores is not None:
|
||||
idxs = np.argsort(scores)
|
||||
else:
|
||||
idxs = np.argsort(y2)
|
||||
|
||||
while len(idxs) > 0:
|
||||
last = len(idxs) - 1
|
||||
i = idxs[last]
|
||||
pick.append(i)
|
||||
|
||||
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
||||
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
||||
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
||||
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
||||
|
||||
w = np.maximum(0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0, yy2 - yy1 + 1)
|
||||
|
||||
overlap = (w * h) / area[idxs[:last]]
|
||||
|
||||
idxs = np.delete(
|
||||
idxs, np.concatenate(
|
||||
([last], np.where(overlap > max_bbox_overlap)[0])))
|
||||
|
||||
return pick
|
||||
@ -0,0 +1,173 @@
|
||||
# vim: expandtab:ts=4:sw=4
|
||||
|
||||
|
||||
class TrackState:
|
||||
"""
|
||||
Enumeration type for the single target track state. Newly created tracks are
|
||||
classified as `tentative` until enough evidence has been collected. Then,
|
||||
the track state is changed to `confirmed`. Tracks that are no longer alive
|
||||
are classified as `deleted` to mark them for removal from the set of active
|
||||
tracks.
|
||||
|
||||
"""
|
||||
|
||||
Tentative = 1
|
||||
Confirmed = 2
|
||||
Deleted = 3
|
||||
|
||||
|
||||
class Track:
|
||||
"""
|
||||
A single target track with state space `(x, y, a, h)` and associated
|
||||
velocities, where `(x, y)` is the center of the bounding box, `a` is the
|
||||
aspect ratio and `h` is the height.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector of the initial state distribution.
|
||||
covariance : ndarray
|
||||
Covariance matrix of the initial state distribution.
|
||||
track_id : int
|
||||
A unique track identifier.
|
||||
n_init : int
|
||||
Number of consecutive detections before the track is confirmed. The
|
||||
track state is set to `Deleted` if a miss occurs within the first
|
||||
`n_init` frames.
|
||||
max_age : int
|
||||
The maximum number of consecutive misses before the track state is
|
||||
set to `Deleted`.
|
||||
feature : Optional[ndarray]
|
||||
Feature vector of the detection this track originates from. If not None,
|
||||
this feature is added to the `features` cache.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
mean : ndarray
|
||||
Mean vector of the initial state distribution.
|
||||
covariance : ndarray
|
||||
Covariance matrix of the initial state distribution.
|
||||
track_id : int
|
||||
A unique track identifier.
|
||||
hits : int
|
||||
Total number of measurement updates.
|
||||
age : int
|
||||
Total number of frames since first occurance.
|
||||
time_since_update : int
|
||||
Total number of frames since last measurement update.
|
||||
state : TrackState
|
||||
The current track state.
|
||||
features : List[ndarray]
|
||||
A cache of features. On each measurement update, the associated feature
|
||||
vector is added to this list.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, mean, cls_, covariance, track_id, n_init, max_age,
|
||||
feature=None):
|
||||
self.mean = mean
|
||||
self.cls_ = cls_
|
||||
self.covariance = covariance
|
||||
self.track_id = track_id
|
||||
self.hits = 1
|
||||
self.age = 1
|
||||
self.time_since_update = 0
|
||||
|
||||
self.state = TrackState.Tentative
|
||||
self.features = []
|
||||
if feature is not None:
|
||||
self.features.append(feature)
|
||||
|
||||
self._n_init = n_init
|
||||
self._max_age = max_age
|
||||
|
||||
def to_tlwh(self):
|
||||
"""Get current position in bounding box format `(top left x, top left y,
|
||||
width, height)`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
The bounding box.
|
||||
|
||||
"""
|
||||
ret = self.mean[:4].copy()
|
||||
ret[2] *= ret[3]
|
||||
ret[:2] -= ret[2:] / 2
|
||||
return ret
|
||||
|
||||
def to_tlbr(self):
|
||||
"""Get current position in bounding box format `(min x, miny, max x,
|
||||
max y)`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
The bounding box.
|
||||
|
||||
"""
|
||||
ret = self.to_tlwh()
|
||||
ret[2:] = ret[:2] + ret[2:]
|
||||
return ret
|
||||
|
||||
def predict(self, kf):
|
||||
"""Propagate the state distribution to the current time step using a
|
||||
Kalman filter prediction step.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kf : kalman_filter.KalmanFilter
|
||||
The Kalman filter.
|
||||
|
||||
"""
|
||||
self.mean, self.covariance = kf.predict(self.mean, self.covariance)
|
||||
self.age += 1
|
||||
self.time_since_update += 1
|
||||
|
||||
def update(self, kf, detection):
|
||||
"""Perform Kalman filter measurement update step and update the feature
|
||||
cache.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kf : kalman_filter.KalmanFilter
|
||||
The Kalman filter.
|
||||
detection : Detection
|
||||
The associated detection.
|
||||
|
||||
"""
|
||||
self.mean, self.covariance = kf.update(
|
||||
self.mean, self.covariance, detection.to_xyah())
|
||||
self.features.append(detection.feature)
|
||||
self.cls_ = detection.cls_
|
||||
|
||||
self.hits += 1
|
||||
self.time_since_update = 0
|
||||
if self.state == TrackState.Tentative and self.hits >= self._n_init:
|
||||
self.state = TrackState.Confirmed
|
||||
|
||||
def mark_missed(self):
|
||||
"""Mark this track as missed (no association at the current time step).
|
||||
"""
|
||||
if self.state == TrackState.Tentative:
|
||||
self.state = TrackState.Deleted
|
||||
elif self.time_since_update > self._max_age:
|
||||
self.state = TrackState.Deleted
|
||||
|
||||
def is_tentative(self):
|
||||
"""Returns True if this track is tentative (unconfirmed).
|
||||
"""
|
||||
return self.state == TrackState.Tentative
|
||||
|
||||
def is_confirmed(self):
|
||||
"""Returns True if this track is confirmed."""
|
||||
return self.state == TrackState.Confirmed
|
||||
|
||||
def is_deleted(self):
|
||||
"""Returns True if this track is dead and should be deleted."""
|
||||
return self.state == TrackState.Deleted
|
||||
|
||||
# 人工建航,强制确认航迹
|
||||
def set_confirmed(self):
|
||||
"""Set this track to confirmed."""
|
||||
self.state = TrackState.Confirmed
|
||||
Binary file not shown.
@ -0,0 +1 @@
|
||||
Subproject commit 567c66463e943b731e08c9a9476660c13408f088
|
||||
|
After Width: | Height: | Size: 2.0 MiB |
@ -0,0 +1,5 @@
|
||||
### 1、下载yolov5仓库
|
||||
git clone https://github.com/ultralytics/yolov5.git
|
||||
|
||||
### 2、demo测试
|
||||
python3 detect_api.py
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 420 KiB |
@ -0,0 +1 @@
|
||||
Subproject commit 567c66463e943b731e08c9a9476660c13408f088
|
||||
Loading…
Reference in new issue