You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
346 lines
14 KiB
346 lines
14 KiB
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2023 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <memory>
|
|
|
|
#include "ceres/dynamic_numeric_diff_cost_function.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/manifold.h"
|
|
#include "ceres/numeric_diff_options.h"
|
|
#include "ceres/types.h"
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
|
|
// Matchers and macros to simplify testing of custom Manifold objects using the
|
|
// gtest testing framework.
|
|
//
|
|
// Testing a Manifold has two parts.
|
|
//
|
|
// 1. Checking that Manifold::Plus() and Manifold::Minus() are correctly
|
|
// defined. This requires per manifold tests.
|
|
//
|
|
// 2. The other methods of the manifold have mathematical properties that make
|
|
// them compatible with Plus() and Minus(), as described in [1].
|
|
//
|
|
// To verify these general requirements for a custom Manifold, use the
|
|
// EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD() macro from within a gtest test. Note
|
|
// that additional domain-specific tests may also be prudent, e.g to verify the
|
|
// behaviour of a Quaternion Manifold about pi.
|
|
//
|
|
// [1] "Integrating Generic Sensor Fusion Algorithms with Sound State
|
|
// Representations through Encapsulation of Manifolds", C. Hertzberg,
|
|
// R. Wagner, U. Frese and L. Schroder, https://arxiv.org/pdf/1107.1119.pdf
|
|
|
|
// Verifies the general requirements for a custom Manifold are satisfied to
|
|
// within the specified (numerical) tolerance.
|
|
//
|
|
// Example usage for a custom Manifold: ExampleManifold:
|
|
//
|
|
// TEST(ExampleManifold, ManifoldInvariantsHold) {
|
|
// constexpr double kTolerance = 1.0e-9;
|
|
// ExampleManifold manifold;
|
|
// ceres::Vector x = ceres::Vector::Zero(manifold.AmbientSize());
|
|
// ceres::Vector y = ceres::Vector::Zero(manifold.AmbientSize());
|
|
// ceres::Vector delta = ceres::Vector::Zero(manifold.TangentSize());
|
|
// EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, kTolerance);
|
|
// }
|
|
#define EXPECT_THAT_MANIFOLD_INVARIANTS_HOLD(manifold, x, delta, y, tolerance) \
|
|
::ceres::Vector zero_tangent = \
|
|
::ceres::Vector::Zero(manifold.TangentSize()); \
|
|
EXPECT_THAT(manifold, ::ceres::XPlusZeroIsXAt(x, tolerance)); \
|
|
EXPECT_THAT(manifold, ::ceres::XMinusXIsZeroAt(x, tolerance)); \
|
|
EXPECT_THAT(manifold, ::ceres::MinusPlusIsIdentityAt(x, delta, tolerance)); \
|
|
EXPECT_THAT(manifold, \
|
|
::ceres::MinusPlusIsIdentityAt(x, zero_tangent, tolerance)); \
|
|
EXPECT_THAT(manifold, ::ceres::PlusMinusIsIdentityAt(x, x, tolerance)); \
|
|
EXPECT_THAT(manifold, ::ceres::PlusMinusIsIdentityAt(x, y, tolerance)); \
|
|
EXPECT_THAT(manifold, ::ceres::HasCorrectPlusJacobianAt(x, tolerance)); \
|
|
EXPECT_THAT(manifold, ::ceres::HasCorrectMinusJacobianAt(x, tolerance)); \
|
|
EXPECT_THAT(manifold, ::ceres::MinusPlusJacobianIsIdentityAt(x, tolerance)); \
|
|
EXPECT_THAT(manifold, \
|
|
::ceres::HasCorrectRightMultiplyByPlusJacobianAt(x, tolerance));
|
|
|
|
// Checks that the invariant Plus(x, 0) == x holds.
|
|
MATCHER_P2(XPlusZeroIsXAt, x, tolerance, "") {
|
|
const int ambient_size = arg.AmbientSize();
|
|
const int tangent_size = arg.TangentSize();
|
|
|
|
Vector actual = Vector::Zero(ambient_size);
|
|
Vector zero = Vector::Zero(tangent_size);
|
|
EXPECT_TRUE(arg.Plus(x.data(), zero.data(), actual.data()));
|
|
const double n = (actual - Vector{x}).norm();
|
|
const double d = x.norm();
|
|
const double diffnorm = (d == 0.0) ? n : (n / d);
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nexpected (x): " << x.transpose()
|
|
<< "\nactual: " << actual.transpose()
|
|
<< "\ndiffnorm: " << diffnorm;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Checks that the invariant Minus(x, x) == 0 holds.
|
|
MATCHER_P2(XMinusXIsZeroAt, x, tolerance, "") {
|
|
const int tangent_size = arg.TangentSize();
|
|
Vector actual = Vector::Zero(tangent_size);
|
|
EXPECT_TRUE(arg.Minus(x.data(), x.data(), actual.data()));
|
|
const double diffnorm = actual.norm();
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nx: " << x.transpose() //
|
|
<< "\nexpected: 0 0 0"
|
|
<< "\nactual: " << actual.transpose()
|
|
<< "\ndiffnorm: " << diffnorm;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Helper struct to curry Plus(x, .) so that it can be numerically
|
|
// differentiated.
|
|
struct PlusFunctor {
|
|
PlusFunctor(const Manifold& manifold, const double* x)
|
|
: manifold(manifold), x(x) {}
|
|
bool operator()(double const* const* parameters, double* x_plus_delta) const {
|
|
return manifold.Plus(x, parameters[0], x_plus_delta);
|
|
}
|
|
|
|
const Manifold& manifold;
|
|
const double* x;
|
|
};
|
|
|
|
// Checks that the output of PlusJacobian matches the one obtained by
|
|
// numerically evaluating D_2 Plus(x,0).
|
|
MATCHER_P2(HasCorrectPlusJacobianAt, x, tolerance, "") {
|
|
const int ambient_size = arg.AmbientSize();
|
|
const int tangent_size = arg.TangentSize();
|
|
|
|
NumericDiffOptions options;
|
|
options.ridders_relative_initial_step_size = 1e-4;
|
|
|
|
DynamicNumericDiffCostFunction<PlusFunctor, RIDDERS> cost_function(
|
|
new PlusFunctor(arg, x.data()), TAKE_OWNERSHIP, options);
|
|
cost_function.AddParameterBlock(tangent_size);
|
|
cost_function.SetNumResiduals(ambient_size);
|
|
|
|
Vector zero = Vector::Zero(tangent_size);
|
|
double* parameters[1] = {zero.data()};
|
|
|
|
Vector x_plus_zero = Vector::Zero(ambient_size);
|
|
Matrix expected = Matrix::Zero(ambient_size, tangent_size);
|
|
double* jacobians[1] = {expected.data()};
|
|
|
|
EXPECT_TRUE(
|
|
cost_function.Evaluate(parameters, x_plus_zero.data(), jacobians));
|
|
|
|
Matrix actual = Matrix::Random(ambient_size, tangent_size);
|
|
EXPECT_TRUE(arg.PlusJacobian(x.data(), actual.data()));
|
|
|
|
const double n = (actual - expected).norm();
|
|
const double d = expected.norm();
|
|
const double diffnorm = (d == 0.0) ? n : n / d;
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nx: " << x.transpose() << "\nexpected: \n"
|
|
<< expected << "\nactual:\n"
|
|
<< actual << "\ndiff:\n"
|
|
<< expected - actual << "\ndiffnorm : " << diffnorm;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Checks that the invariant Minus(Plus(x, delta), x) == delta holds.
|
|
MATCHER_P3(MinusPlusIsIdentityAt, x, delta, tolerance, "") {
|
|
const int ambient_size = arg.AmbientSize();
|
|
const int tangent_size = arg.TangentSize();
|
|
Vector x_plus_delta = Vector::Zero(ambient_size);
|
|
EXPECT_TRUE(arg.Plus(x.data(), delta.data(), x_plus_delta.data()));
|
|
Vector actual = Vector::Zero(tangent_size);
|
|
EXPECT_TRUE(arg.Minus(x_plus_delta.data(), x.data(), actual.data()));
|
|
|
|
const double n = (actual - Vector{delta}).norm();
|
|
const double d = delta.norm();
|
|
const double diffnorm = (d == 0.0) ? n : (n / d);
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nx: " << x.transpose()
|
|
<< "\nexpected: " << delta.transpose()
|
|
<< "\nactual:" << actual.transpose()
|
|
<< "\ndiff:" << (delta - actual).transpose()
|
|
<< "\ndiffnorm: " << diffnorm;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Checks that the invariant Plus(Minus(y, x), x) == y holds.
|
|
MATCHER_P3(PlusMinusIsIdentityAt, x, y, tolerance, "") {
|
|
const int ambient_size = arg.AmbientSize();
|
|
const int tangent_size = arg.TangentSize();
|
|
|
|
Vector y_minus_x = Vector::Zero(tangent_size);
|
|
EXPECT_TRUE(arg.Minus(y.data(), x.data(), y_minus_x.data()));
|
|
|
|
Vector actual = Vector::Zero(ambient_size);
|
|
EXPECT_TRUE(arg.Plus(x.data(), y_minus_x.data(), actual.data()));
|
|
|
|
const double n = (actual - Vector{y}).norm();
|
|
const double d = y.norm();
|
|
const double diffnorm = (d == 0.0) ? n : (n / d);
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nx: " << x.transpose()
|
|
<< "\nexpected: " << y.transpose()
|
|
<< "\nactual:" << actual.transpose()
|
|
<< "\ndiff:" << (y - actual).transpose()
|
|
<< "\ndiffnorm: " << diffnorm;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Helper struct to curry Minus(., x) so that it can be numerically
|
|
// differentiated.
|
|
struct MinusFunctor {
|
|
MinusFunctor(const Manifold& manifold, const double* x)
|
|
: manifold(manifold), x(x) {}
|
|
bool operator()(double const* const* parameters, double* y_minus_x) const {
|
|
return manifold.Minus(parameters[0], x, y_minus_x);
|
|
}
|
|
|
|
const Manifold& manifold;
|
|
const double* x;
|
|
};
|
|
|
|
// Checks that the output of MinusJacobian matches the one obtained by
|
|
// numerically evaluating D_1 Minus(x,x).
|
|
MATCHER_P2(HasCorrectMinusJacobianAt, x, tolerance, "") {
|
|
const int ambient_size = arg.AmbientSize();
|
|
const int tangent_size = arg.TangentSize();
|
|
|
|
Vector y = x;
|
|
Vector y_minus_x = Vector::Zero(tangent_size);
|
|
|
|
NumericDiffOptions options;
|
|
options.ridders_relative_initial_step_size = 1e-4;
|
|
DynamicNumericDiffCostFunction<MinusFunctor, RIDDERS> cost_function(
|
|
new MinusFunctor(arg, x.data()), TAKE_OWNERSHIP, options);
|
|
cost_function.AddParameterBlock(ambient_size);
|
|
cost_function.SetNumResiduals(tangent_size);
|
|
|
|
double* parameters[1] = {y.data()};
|
|
|
|
Matrix expected = Matrix::Zero(tangent_size, ambient_size);
|
|
double* jacobians[1] = {expected.data()};
|
|
|
|
EXPECT_TRUE(cost_function.Evaluate(parameters, y_minus_x.data(), jacobians));
|
|
|
|
Matrix actual = Matrix::Random(tangent_size, ambient_size);
|
|
EXPECT_TRUE(arg.MinusJacobian(x.data(), actual.data()));
|
|
|
|
const double n = (actual - expected).norm();
|
|
const double d = expected.norm();
|
|
const double diffnorm = (d == 0.0) ? n : (n / d);
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nx: " << x.transpose() << "\nexpected: \n"
|
|
<< expected << "\nactual:\n"
|
|
<< actual << "\ndiff:\n"
|
|
<< expected - actual << "\ndiffnorm: " << diffnorm;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Checks that D_delta Minus(Plus(x, delta), x) at delta = 0 is an identity
|
|
// matrix.
|
|
MATCHER_P2(MinusPlusJacobianIsIdentityAt, x, tolerance, "") {
|
|
const int ambient_size = arg.AmbientSize();
|
|
const int tangent_size = arg.TangentSize();
|
|
|
|
Matrix plus_jacobian(ambient_size, tangent_size);
|
|
EXPECT_TRUE(arg.PlusJacobian(x.data(), plus_jacobian.data()));
|
|
Matrix minus_jacobian(tangent_size, ambient_size);
|
|
EXPECT_TRUE(arg.MinusJacobian(x.data(), minus_jacobian.data()));
|
|
|
|
const Matrix actual = minus_jacobian * plus_jacobian;
|
|
const Matrix expected = Matrix::Identity(tangent_size, tangent_size);
|
|
|
|
const double n = (actual - expected).norm();
|
|
const double d = expected.norm();
|
|
const double diffnorm = n / d;
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nx: " << x.transpose() << "\nexpected: \n"
|
|
<< expected << "\nactual:\n"
|
|
<< actual << "\ndiff:\n"
|
|
<< expected - actual << "\ndiffnorm: " << diffnorm;
|
|
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Verify that the output of RightMultiplyByPlusJacobian is ambient_matrix *
|
|
// plus_jacobian.
|
|
MATCHER_P2(HasCorrectRightMultiplyByPlusJacobianAt, x, tolerance, "") {
|
|
const int ambient_size = arg.AmbientSize();
|
|
const int tangent_size = arg.TangentSize();
|
|
|
|
constexpr int kMinNumRows = 0;
|
|
constexpr int kMaxNumRows = 3;
|
|
for (int num_rows = kMinNumRows; num_rows <= kMaxNumRows; ++num_rows) {
|
|
Matrix plus_jacobian = Matrix::Random(ambient_size, tangent_size);
|
|
EXPECT_TRUE(arg.PlusJacobian(x.data(), plus_jacobian.data()));
|
|
|
|
Matrix ambient_matrix = Matrix::Random(num_rows, ambient_size);
|
|
Matrix expected = ambient_matrix * plus_jacobian;
|
|
|
|
Matrix actual = Matrix::Random(num_rows, tangent_size);
|
|
EXPECT_TRUE(arg.RightMultiplyByPlusJacobian(
|
|
x.data(), num_rows, ambient_matrix.data(), actual.data()));
|
|
const double n = (actual - expected).norm();
|
|
const double d = expected.norm();
|
|
const double diffnorm = (d == 0.0) ? n : (n / d);
|
|
if (diffnorm > tolerance) {
|
|
*result_listener << "\nx: " << x.transpose() << "\nambient_matrix : \n"
|
|
<< ambient_matrix << "\nplus_jacobian : \n"
|
|
<< plus_jacobian << "\nexpected: \n"
|
|
<< expected << "\nactual:\n"
|
|
<< actual << "\ndiff:\n"
|
|
<< expected - actual << "\ndiffnorm : " << diffnorm;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace ceres
|