You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

471 lines
19 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#ifndef CERES_PUBLIC_COVARIANCE_H_
#define CERES_PUBLIC_COVARIANCE_H_
#include <memory>
#include <utility>
#include <vector>
#include "ceres/internal/config.h"
#include "ceres/internal/disable_warnings.h"
#include "ceres/internal/export.h"
#include "ceres/types.h"
namespace ceres {
class Problem;
namespace internal {
class CovarianceImpl;
} // namespace internal
// WARNING
// =======
// It is very easy to use this class incorrectly without understanding
// the underlying mathematics. Please read and understand the
// documentation completely before attempting to use it.
//
//
// This class allows the user to evaluate the covariance for a
// non-linear least squares problem and provides random access to its
// blocks
//
// Background
// ==========
// One way to assess the quality of the solution returned by a
// non-linear least squares solver is to analyze the covariance of the
// solution.
//
// Let us consider the non-linear regression problem
//
// y = f(x) + N(0, I)
//
// i.e., the observation y is a random non-linear function of the
// independent variable x with mean f(x) and identity covariance. Then
// the maximum likelihood estimate of x given observations y is the
// solution to the non-linear least squares problem:
//
// x* = arg min_x |f(x) - y|^2
//
// And the covariance of x* is given by
//
// C(x*) = inverse[J'(x*)J(x*)]
//
// Here J(x*) is the Jacobian of f at x*. The above formula assumes
// that J(x*) has full column rank.
//
// If J(x*) is rank deficient, then the covariance matrix C(x*) is
// also rank deficient and is given by
//
// C(x*) = pseudoinverse[J'(x*)J(x*)]
//
// Note that in the above, we assumed that the covariance
// matrix for y was identity. This is an important assumption. If this
// is not the case and we have
//
// y = f(x) + N(0, S)
//
// Where S is a positive semi-definite matrix denoting the covariance
// of y, then the maximum likelihood problem to be solved is
//
// x* = arg min_x f'(x) inverse[S] f(x)
//
// and the corresponding covariance estimate of x* is given by
//
// C(x*) = inverse[J'(x*) inverse[S] J(x*)]
//
// So, if it is the case that the observations being fitted to have a
// covariance matrix not equal to identity, then it is the user's
// responsibility that the corresponding cost functions are correctly
// scaled, e.g. in the above case the cost function for this problem
// should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2}
// is the inverse square root of the covariance matrix S.
//
// This class allows the user to evaluate the covariance for a
// non-linear least squares problem and provides random access to its
// blocks. The computation assumes that the CostFunctions compute
// residuals such that their covariance is identity.
//
// Since the computation of the covariance matrix requires computing
// the inverse of a potentially large matrix, this can involve a
// rather large amount of time and memory. However, it is usually the
// case that the user is only interested in a small part of the
// covariance matrix. Quite often just the block diagonal. This class
// allows the user to specify the parts of the covariance matrix that
// she is interested in and then uses this information to only compute
// and store those parts of the covariance matrix.
//
// Rank of the Jacobian
// --------------------
// As we noted above, if the jacobian is rank deficient, then the
// inverse of J'J is not defined and instead a pseudo inverse needs to
// be computed.
//
// The rank deficiency in J can be structural -- columns which are
// always known to be zero or numerical -- depending on the exact
// values in the Jacobian.
//
// Structural rank deficiency occurs when the problem contains
// parameter blocks that are constant. This class correctly handles
// structural rank deficiency like that.
//
// Numerical rank deficiency, where the rank of the matrix cannot be
// predicted by its sparsity structure and requires looking at its
// numerical values is more complicated. Here again there are two
// cases.
//
// a. The rank deficiency arises from overparameterization. e.g., a
// four dimensional quaternion used to parameterize SO(3), which is
// a three dimensional manifold. In cases like this, the user should
// use an appropriate Manifold. Not only will this lead
// to better numerical behaviour of the Solver, it will also expose
// the rank deficiency to the Covariance object so that it can
// handle it correctly.
//
// b. More general numerical rank deficiency in the Jacobian
// requires the computation of the so called Singular Value
// Decomposition (SVD) of J'J. We do not know how to do this for
// large sparse matrices efficiently. For small and moderate sized
// problems this is done using dense linear algebra.
//
// Gauge Invariance
// ----------------
// In structure from motion (3D reconstruction) problems, the
// reconstruction is ambiguous up to a similarity transform. This is
// known as a Gauge Ambiguity. Handling Gauges correctly requires the
// use of SVD or custom inversion algorithms. For small problems the
// user can use the dense algorithm. For more details see
//
// Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge
// transformations for uncertainty description of geometric structure
// with indeterminacy. IEEE Transactions on Information Theory 47(5):
// 2017-2028 (2001)
//
// Example Usage
// =============
//
// double x[3];
// double y[2];
//
// Problem problem;
// problem.AddParameterBlock(x, 3);
// problem.AddParameterBlock(y, 2);
// <Build Problem>
// <Solve Problem>
//
// Covariance::Options options;
// Covariance covariance(options);
//
// std::vector<std::pair<const double*, const double*>> covariance_blocks;
// covariance_blocks.push_back(make_pair(x, x));
// covariance_blocks.push_back(make_pair(y, y));
// covariance_blocks.push_back(make_pair(x, y));
//
// CHECK(covariance.Compute(covariance_blocks, &problem));
//
// double covariance_xx[3 * 3];
// double covariance_yy[2 * 2];
// double covariance_xy[3 * 2];
// covariance.GetCovarianceBlock(x, x, covariance_xx)
// covariance.GetCovarianceBlock(y, y, covariance_yy)
// covariance.GetCovarianceBlock(x, y, covariance_xy)
//
class CERES_EXPORT Covariance {
public:
struct CERES_EXPORT Options {
// Sparse linear algebra library to use when a sparse matrix
// factorization is being used to compute the covariance matrix.
//
// Currently this only applies to SPARSE_QR.
SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type =
#if !defined(CERES_NO_SUITESPARSE)
SUITE_SPARSE;
#else
// Eigen's QR factorization is always available.
EIGEN_SPARSE;
#endif
// Ceres supports two different algorithms for covariance
// estimation, which represent different tradeoffs in speed,
// accuracy and reliability.
//
// 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
// computations. It computes the singular value decomposition
//
// U * D * V' = J
//
// and then uses it to compute the pseudo inverse of J'J as
//
// pseudoinverse[J'J] = V * pseudoinverse[D^2] * V'
//
// It is an accurate but slow method and should only be used
// for small to moderate sized problems. It can handle
// full-rank as well as rank deficient Jacobians.
//
// 2. SPARSE_QR uses the sparse QR factorization algorithm
// to compute the decomposition
//
// Q * R = J
//
// [J'J]^-1 = [R'*R]^-1
//
// SPARSE_QR is not capable of computing the covariance if the
// Jacobian is rank deficient. Depending on the value of
// Covariance::Options::sparse_linear_algebra_library_type, either
// Eigen's Sparse QR factorization algorithm will be used or
// SuiteSparse's high performance SuiteSparseQR algorithm will be
// used.
CovarianceAlgorithmType algorithm_type = SPARSE_QR;
// During QR factorization, if a column with Euclidean norm less
// than column_pivot_threshold is encountered it is treated as
// zero.
//
// If column_pivot_threshold < 0, then an automatic default value
// of 20*(m+n)*eps*sqrt(max(diag(J*J))) is used. Here m and n are
// the number of rows and columns of the Jacobian (J)
// respectively.
//
// This is an advanced option meant for users who know enough
// about their Jacobian matrices that they can determine a value
// better than the default.
double column_pivot_threshold = -1;
// If the Jacobian matrix is near singular, then inverting J'J
// will result in unreliable results, e.g, if
//
// J = [1.0 1.0 ]
// [1.0 1.0000001 ]
//
// which is essentially a rank deficient matrix, we have
//
// inv(J'J) = [ 2.0471e+14 -2.0471e+14]
// [-2.0471e+14 2.0471e+14]
//
// This is not a useful result. Therefore, by default
// Covariance::Compute will return false if a rank deficient
// Jacobian is encountered. How rank deficiency is detected
// depends on the algorithm being used.
//
// 1. DENSE_SVD
//
// min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
//
// where min_sigma and max_sigma are the minimum and maximum
// singular values of J respectively.
//
// 2. SPARSE_QR
//
// rank(J) < num_col(J)
//
// Here rank(J) is the estimate of the rank of J returned by the
// sparse QR factorization algorithm. It is a fairly reliable
// indication of rank deficiency.
//
double min_reciprocal_condition_number = 1e-14;
// When using DENSE_SVD, the user has more control in dealing with
// singular and near singular covariance matrices.
//
// As mentioned above, when the covariance matrix is near
// singular, instead of computing the inverse of J'J, the
// Moore-Penrose pseudoinverse of J'J should be computed.
//
// If J'J has the eigen decomposition (lambda_i, e_i), where
// lambda_i is the i^th eigenvalue and e_i is the corresponding
// eigenvector, then the inverse of J'J is
//
// inverse[J'J] = sum_i e_i e_i' / lambda_i
//
// and computing the pseudo inverse involves dropping terms from
// this sum that correspond to small eigenvalues.
//
// How terms are dropped is controlled by
// min_reciprocal_condition_number and null_space_rank.
//
// If null_space_rank is non-negative, then the smallest
// null_space_rank eigenvalue/eigenvectors are dropped
// irrespective of the magnitude of lambda_i. If the ratio of the
// smallest non-zero eigenvalue to the largest eigenvalue in the
// truncated matrix is still below
// min_reciprocal_condition_number, then the Covariance::Compute()
// will fail and return false.
//
// Setting null_space_rank = -1 drops all terms for which
//
// lambda_i / lambda_max < min_reciprocal_condition_number.
//
// This option has no effect on the SUITE_SPARSE_QR and
// EIGEN_SPARSE_QR algorithms.
int null_space_rank = 0;
int num_threads = 1;
// Even though the residual blocks in the problem may contain loss
// functions, setting apply_loss_function to false will turn off
// the application of the loss function to the output of the cost
// function and in turn its effect on the covariance.
//
// TODO(sameergaarwal): Expand this based on Jim's experiments.
bool apply_loss_function = true;
};
explicit Covariance(const Options& options);
~Covariance();
// Compute a part of the covariance matrix.
//
// The vector covariance_blocks, indexes into the covariance matrix
// block-wise using pairs of parameter blocks. This allows the
// covariance estimation algorithm to only compute and store these
// blocks.
//
// Since the covariance matrix is symmetric, if the user passes
// (block1, block2), then GetCovarianceBlock can be called with
// block1, block2 as well as block2, block1.
//
// covariance_blocks cannot contain duplicates. Bad things will
// happen if they do.
//
// Note that the list of covariance_blocks is only used to determine
// what parts of the covariance matrix are computed. The full
// Jacobian is used to do the computation, i.e. they do not have an
// impact on what part of the Jacobian is used for computation.
//
// The return value indicates the success or failure of the
// covariance computation. Please see the documentation for
// Covariance::Options for more on the conditions under which this
// function returns false.
bool Compute(const std::vector<std::pair<const double*, const double*>>&
covariance_blocks,
Problem* problem);
// Compute a part of the covariance matrix.
//
// The vector parameter_blocks contains the parameter blocks that
// are used for computing the covariance matrix. From this vector
// all covariance pairs are generated. This allows the covariance
// estimation algorithm to only compute and store these blocks.
//
// parameter_blocks cannot contain duplicates. Bad things will
// happen if they do.
//
// Note that the list of covariance_blocks is only used to determine
// what parts of the covariance matrix are computed. The full
// Jacobian is used to do the computation, i.e. they do not have an
// impact on what part of the Jacobian is used for computation.
//
// The return value indicates the success or failure of the
// covariance computation. Please see the documentation for
// Covariance::Options for more on the conditions under which this
// function returns false.
bool Compute(const std::vector<const double*>& parameter_blocks,
Problem* problem);
// Return the block of the cross-covariance matrix corresponding to
// parameter_block1 and parameter_block2.
//
// Compute must be called before the first call to
// GetCovarianceBlock and the pair <parameter_block1,
// parameter_block2> OR the pair <parameter_block2,
// parameter_block1> must have been present in the vector
// covariance_blocks when Compute was called. Otherwise
// GetCovarianceBlock will return false.
//
// covariance_block must point to a memory location that can store a
// parameter_block1_size x parameter_block2_size matrix. The
// returned covariance will be a row-major matrix.
bool GetCovarianceBlock(const double* parameter_block1,
const double* parameter_block2,
double* covariance_block) const;
// Returns the block of the cross-covariance in the tangent space if a
// manifold is associated with either parameter block; else returns
// cross-covariance in the ambient space.
//
// Compute must be called before the first call to
// GetCovarianceBlock and the pair <parameter_block1,
// parameter_block2> OR the pair <parameter_block2,
// parameter_block1> must have been present in the vector
// covariance_blocks when Compute was called. Otherwise
// GetCovarianceBlock will return false.
//
// covariance_block must point to a memory location that can store a
// parameter_block1_local_size x parameter_block2_local_size matrix. The
// returned covariance will be a row-major matrix.
bool GetCovarianceBlockInTangentSpace(const double* parameter_block1,
const double* parameter_block2,
double* covariance_block) const;
// Return the covariance matrix corresponding to all parameter_blocks.
//
// Compute must be called before calling GetCovarianceMatrix and all
// parameter_blocks must have been present in the vector
// parameter_blocks when Compute was called. Otherwise
// GetCovarianceMatrix returns false.
//
// covariance_matrix must point to a memory location that can store
// the size of the covariance matrix. The covariance matrix will be
// a square matrix whose row and column count is equal to the sum of
// the sizes of the individual parameter blocks. The covariance
// matrix will be a row-major matrix.
bool GetCovarianceMatrix(const std::vector<const double*>& parameter_blocks,
double* covariance_matrix) const;
// Return the covariance matrix corresponding to parameter_blocks
// in the tangent space if a manifold is associated with one of the parameter
// blocks else returns the covariance matrix in the ambient space.
//
// Compute must be called before calling GetCovarianceMatrix and all
// parameter_blocks must have been present in the vector
// parameters_blocks when Compute was called. Otherwise
// GetCovarianceMatrix returns false.
//
// covariance_matrix must point to a memory location that can store
// the size of the covariance matrix. The covariance matrix will be
// a square matrix whose row and column count is equal to the sum of
// the sizes of the tangent spaces of the individual parameter
// blocks. The covariance matrix will be a row-major matrix.
bool GetCovarianceMatrixInTangentSpace(
const std::vector<const double*>& parameter_blocks,
double* covariance_matrix) const;
private:
std::unique_ptr<internal::CovarianceImpl> impl_;
};
} // namespace ceres
#include "ceres/internal/reenable_warnings.h"
#endif // CERES_PUBLIC_COVARIANCE_H_