|
|
|
@ -5,11 +5,11 @@ using namespace ceres;
|
|
|
|
|
struct HomographyResidual
|
|
|
|
|
{
|
|
|
|
|
HomographyResidual(const cv::KeyPoint& keypoint_i, const cv::KeyPoint& keypoint_j)
|
|
|
|
|
: keypoint_i_(keypoint_i), keypoint_j_(keypoint_j)
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
: keypoint_i_(keypoint_i), keypoint_j_(keypoint_j) {}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
bool operator()(const T* const h_i, const T* const h_j, T* residual) const {
|
|
|
|
|
bool operator()(const T* const h_i, const T* const h_j, T* residual) const
|
|
|
|
|
{
|
|
|
|
|
// 残差计算逻辑
|
|
|
|
|
T H_i[9] = { h_i[0], h_i[1], h_i[2],
|
|
|
|
|
h_i[3], h_i[4], h_i[5],
|
|
|
|
@ -25,8 +25,10 @@ struct HomographyResidual
|
|
|
|
|
T P_i[3] = { T(0), T(0), T(0) };
|
|
|
|
|
T P_j[3] = { T(0), T(0), T(0) };
|
|
|
|
|
|
|
|
|
|
for (int row = 0; row < 3; row++) {
|
|
|
|
|
for (int col = 0; col < 3; col++) {
|
|
|
|
|
for (int row = 0; row < 3; row++)
|
|
|
|
|
{
|
|
|
|
|
for (int col = 0; col < 3; col++)
|
|
|
|
|
{
|
|
|
|
|
P_i[row] += H_i[row * 3 + col] * p_i[col];
|
|
|
|
|
P_j[row] += H_j[row * 3 + col] * p_j[col];
|
|
|
|
|
}
|
|
|
|
@ -77,8 +79,8 @@ SINT32 BA_Task::addFrame(GD_VIDEO_FRAME_S img, FrameInfo para)
|
|
|
|
|
// 缓存初始H
|
|
|
|
|
Proj t_Proj = _GeoStitcher->AnlayseTform(para);
|
|
|
|
|
auto H = _GeoStitcher->findHomography(t_Proj,_panPara);
|
|
|
|
|
_origMatrix.push_back(H);
|
|
|
|
|
_currMatrix.push_back(H);
|
|
|
|
|
_origMatrix.push_back(H.clone());
|
|
|
|
|
_currMatrix.push_back(H.clone());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 提取特征点
|
|
|
|
@ -102,43 +104,14 @@ void BA_Task::setPanPara(PanInfo info)
|
|
|
|
|
|
|
|
|
|
void BA_Task::Test()
|
|
|
|
|
{
|
|
|
|
|
// google::InitGoogleLogging("ceres");
|
|
|
|
|
|
|
|
|
|
// // The variable to solve for with its initial value. It will be
|
|
|
|
|
// // mutated in place by the solver.
|
|
|
|
|
// double x = 0.5;
|
|
|
|
|
// const double initial_x = x;
|
|
|
|
|
|
|
|
|
|
// // Build the problem.
|
|
|
|
|
// ceres::Problem problem;
|
|
|
|
|
|
|
|
|
|
// // Set up the only cost function (also known as residual). This uses
|
|
|
|
|
// // auto-differentiation to obtain the derivative (jacobian).
|
|
|
|
|
// ceres::CostFunction* cost_function =
|
|
|
|
|
// new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
|
|
|
|
|
// problem.AddResidualBlock(cost_function, nullptr, &x);
|
|
|
|
|
|
|
|
|
|
// // Run the solver!
|
|
|
|
|
// ceres::Solver::Options options;
|
|
|
|
|
// options.minimizer_progress_to_stdout = true;
|
|
|
|
|
// ceres::Solver::Summary summary;
|
|
|
|
|
// ceres::Solve(options, &problem, &summary);
|
|
|
|
|
|
|
|
|
|
// std::cout << summary.BriefReport() << "\n";
|
|
|
|
|
// std::cout << "x : " << initial_x << " -> " << x << "\n";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//#define SHOW_MATCH
|
|
|
|
|
void BA_Task::optimizeBA()
|
|
|
|
|
{
|
|
|
|
|
//for (int i = 0; i < _currMatrix.size(); i++)
|
|
|
|
|
//{
|
|
|
|
|
// std::cout << "------------" << std::endl;
|
|
|
|
|
// std::cout << _origMatrix[i] << std::endl;
|
|
|
|
|
// std::cout << _currMatrix[i] << std::endl;
|
|
|
|
|
// std::cout << "------------" << std::endl;
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
remap(_origMatrix, "_origMatrix");
|
|
|
|
|
|
|
|
|
|
// 计算匹配性矩阵
|
|
|
|
|
CalMatchMat(0.3);
|
|
|
|
@ -146,137 +119,25 @@ void BA_Task::optimizeBA()
|
|
|
|
|
google::InitGoogleLogging("ceres");
|
|
|
|
|
|
|
|
|
|
// 将 cv::Mat 转换为 Ceres 需要的数组形式
|
|
|
|
|
std::vector<double*> h_list(_origMatrix.size());
|
|
|
|
|
std::vector<double*> h_list(_currMatrix.size());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < _origMatrix.size(); i++)
|
|
|
|
|
for (int i = 0; i < _currMatrix.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
h_list[i] = (double*)_origMatrix[i].data;
|
|
|
|
|
h_list[i] = (double*)_currMatrix[i].data;
|
|
|
|
|
}
|
|
|
|
|
// 创建 Ceres 问题
|
|
|
|
|
ceres::Problem problem;
|
|
|
|
|
|
|
|
|
|
// 添加残差块
|
|
|
|
|
int nParaCnt = 0;//参数组数
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < _MatchMat.cols; i++)
|
|
|
|
|
{
|
|
|
|
|
for (int j = i + 1; j < _MatchMat.rows; j++)
|
|
|
|
|
{
|
|
|
|
|
int M = _MatchMat.at<int>(i, j); // 获取匹配点对的数量
|
|
|
|
|
if (M > 0)
|
|
|
|
|
{
|
|
|
|
|
// 添加匹配点对的残差块
|
|
|
|
|
for (int m = 0; m < M; m++)
|
|
|
|
|
{
|
|
|
|
|
// 注意:这里不对,应该找匹配点!! todo 节后完成
|
|
|
|
|
cv::KeyPoint keypoint_i = _FeaPtVec[i][m];
|
|
|
|
|
cv::KeyPoint keypoint_j = _FeaPtVec[j][m];
|
|
|
|
|
|
|
|
|
|
ceres::CostFunction* cost_function =
|
|
|
|
|
new ceres::AutoDiffCostFunction<HomographyResidual, 2, 8, 8>(
|
|
|
|
|
new HomographyResidual(keypoint_i, keypoint_j));
|
|
|
|
|
problem.AddResidualBlock(cost_function, nullptr, h_list[i], h_list[j]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 配置求解器
|
|
|
|
|
ceres::Solver::Options options;
|
|
|
|
|
options.minimizer_progress_to_stdout = true;
|
|
|
|
|
//options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; // 使用稀疏求解器
|
|
|
|
|
options.minimizer_progress_to_stdout = true;
|
|
|
|
|
options.num_threads = 1; // 使用多线程
|
|
|
|
|
ceres::Solver::Summary summary;
|
|
|
|
|
|
|
|
|
|
// 求解
|
|
|
|
|
ceres::Solve(options, &problem, &summary);
|
|
|
|
|
|
|
|
|
|
//// 将优化后的参数转换回 cv::Mat
|
|
|
|
|
for (int i = 0; i < _currMatrix.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
std::cout << "------------" << std::endl;
|
|
|
|
|
std::cout << _origMatrix[i] << std::endl;
|
|
|
|
|
std::cout << _currMatrix[i] << std::endl;
|
|
|
|
|
std::cout << "------------" << std::endl;
|
|
|
|
|
_currMatrix[i].at<double>(0, 0) = h_list[i][0];
|
|
|
|
|
_currMatrix[i].at<double>(0, 1) = h_list[i][1];
|
|
|
|
|
_currMatrix[i].at<double>(0, 2) = h_list[i][2];
|
|
|
|
|
_currMatrix[i].at<double>(1, 0) = h_list[i][3];
|
|
|
|
|
_currMatrix[i].at<double>(1, 1) = h_list[i][4];
|
|
|
|
|
_currMatrix[i].at<double>(1, 2) = h_list[i][5];
|
|
|
|
|
_currMatrix[i].at<double>(2, 0) = h_list[i][6];
|
|
|
|
|
_currMatrix[i].at<double>(2, 1) = h_list[i][7];
|
|
|
|
|
_currMatrix[i].at<double>(2, 2) = 1.0; // 固定 h_33 = 1
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 输出结果
|
|
|
|
|
std::cout << summary.BriefReport() << std::endl;
|
|
|
|
|
|
|
|
|
|
remap();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void BA_Task::remap()
|
|
|
|
|
{
|
|
|
|
|
cv::Mat image(1000, 1000, CV_8UC3, cv::Scalar(0, 0, 0));
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < _imgVec.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
cv::Mat imagetmp(1000, 1000, CV_8UC3, cv::Scalar(0, 0, 0));
|
|
|
|
|
cv::warpPerspective(_imgVec[i], imagetmp, _currMatrix[i], imagetmp.size());
|
|
|
|
|
|
|
|
|
|
cv::Mat mask = cv::Mat::ones(_imgVec[i].size(), CV_8UC1) * 255;
|
|
|
|
|
cv::Mat warped_mask;
|
|
|
|
|
cv::warpPerspective(mask, warped_mask, _currMatrix[i], image.size());
|
|
|
|
|
imagetmp.copyTo(image, warped_mask);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
imshow("remap", image);
|
|
|
|
|
cv::waitKey(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//#define SHOW_MATCH
|
|
|
|
|
SINT32 BA_Task::CalMatchMat(float fiou_thre)
|
|
|
|
|
{
|
|
|
|
|
_IOUMat = cv::Mat::zeros(_polygon.size(),_polygon.size(),CV_32FC1);
|
|
|
|
|
|
|
|
|
|
_MatchMat = cv::Mat::zeros(_polygon.size(), _polygon.size(), CV_32SC1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 先计算IOU矩阵
|
|
|
|
|
for (size_t i = 0; i < _polygon.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
vector<cv::Point2f> poly_i = _polygon[i];
|
|
|
|
|
|
|
|
|
|
for (size_t j = i + 1; j < _polygon.size(); j++)
|
|
|
|
|
{
|
|
|
|
|
if (i == j)
|
|
|
|
|
{
|
|
|
|
|
_IOUMat.at<float>(i,j) = 1;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
vector<cv::Point2f> poly_j = _polygon[j];
|
|
|
|
|
|
|
|
|
|
float fiou = computeQuadrilateralIOU(poly_i,poly_j);
|
|
|
|
|
_IOUMat.at<float>(i,j) = fiou;
|
|
|
|
|
_IOUMat.at<float>(j,i) = fiou;//是对称矩阵
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// IOU大于0.3以上才进行特征点匹配
|
|
|
|
|
for (size_t i = 0; i < _polygon.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
for (size_t j = i+1; j < _polygon.size(); j++)
|
|
|
|
|
{
|
|
|
|
|
if (i == j)
|
|
|
|
|
{
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// IOU满足条件才匹配特征点
|
|
|
|
|
if (_IOUMat.at<float>(i,j) < fiou_thre)
|
|
|
|
|
if (_IOUMat.at<float>(i, j) < 0.3)
|
|
|
|
|
{
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
@ -312,7 +173,7 @@ SINT32 BA_Task::CalMatchMat(float fiou_thre)
|
|
|
|
|
#endif
|
|
|
|
|
std::vector<cv::DMatch> matches;
|
|
|
|
|
//_FeaMatcher->matchFeatures(_FeaDespVec[i],_FeaDespVec[j],matches);
|
|
|
|
|
_FeaMatcher->matchFeatures_WithH(_FeaPtVec[i],_FeaDespVec[i], _FeaPtVec[j], _FeaDespVec[j], _origMatrix[i], _origMatrix[j], matches);
|
|
|
|
|
_FeaMatcher->matchFeatures_WithH(_FeaPtVec[i], _FeaDespVec[i], _FeaPtVec[j], _FeaDespVec[j], _origMatrix[i], _origMatrix[j], matches);
|
|
|
|
|
|
|
|
|
|
// 图像特征匹配点对超过N对才认为有效
|
|
|
|
|
if (matches.size() > 50)
|
|
|
|
@ -345,12 +206,115 @@ SINT32 BA_Task::CalMatchMat(float fiou_thre)
|
|
|
|
|
cv::imshow("Feature Matches", img_matches);
|
|
|
|
|
cv::waitKey(0);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// 添加匹配点对的残差块
|
|
|
|
|
for (int m = 0; m < matches.size(); m++)
|
|
|
|
|
{
|
|
|
|
|
auto mc = matches[m];
|
|
|
|
|
// 注意:这里不对,应该找匹配点!! todo 节后完成
|
|
|
|
|
cv::KeyPoint keypoint_i = _FeaPtVec[i][mc.queryIdx];
|
|
|
|
|
cv::KeyPoint keypoint_j = _FeaPtVec[j][mc.trainIdx];
|
|
|
|
|
|
|
|
|
|
ceres::LossFunction* loss_function = new ceres::HuberLoss(15);
|
|
|
|
|
|
|
|
|
|
ceres::CostFunction* cost_function =
|
|
|
|
|
new ceres::AutoDiffCostFunction<HomographyResidual, 2, 8, 8>(
|
|
|
|
|
new HomographyResidual(keypoint_i, keypoint_j));
|
|
|
|
|
problem.AddResidualBlock(cost_function, loss_function, h_list[i], h_list[j]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nParaCnt += matches.size();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 配置求解器
|
|
|
|
|
ceres::Solver::Options options;
|
|
|
|
|
options.max_num_iterations = 2; // 增加最大迭代次数
|
|
|
|
|
options.function_tolerance = 1e-8; // 设置更严格的函数值容忍度
|
|
|
|
|
options.gradient_tolerance = 1e-10; // 设置更严格的梯度容忍度
|
|
|
|
|
options.parameter_tolerance = 1e-10; // 设置更严格的参数容忍度
|
|
|
|
|
options.minimizer_progress_to_stdout = true;
|
|
|
|
|
//options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; // 使用稀疏求解器
|
|
|
|
|
options.num_threads = 16; // 使用多线程
|
|
|
|
|
ceres::Solver::Summary summary;
|
|
|
|
|
|
|
|
|
|
// 求解
|
|
|
|
|
ceres::Solve(options, &problem, &summary);
|
|
|
|
|
|
|
|
|
|
//// 将优化后的参数转换回 cv::Mat
|
|
|
|
|
for (int i = 0; i < _currMatrix.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
std::cout << "------------" << std::endl;
|
|
|
|
|
std::cout << _origMatrix[i] << std::endl;
|
|
|
|
|
std::cout << _currMatrix[i] << std::endl;
|
|
|
|
|
std::cout << "------------" << std::endl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 输出结果
|
|
|
|
|
std::cout << summary.BriefReport() << std::endl;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
remap(_currMatrix, "_currMatrix");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv::waitKey(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void BA_Task::remap(vector<cv::Mat_<double>> H_Vec, std::string winname)
|
|
|
|
|
{
|
|
|
|
|
cv::Mat image(1500, 1500, CV_8UC3, cv::Scalar(0, 0, 0));
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < _imgVec.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
cv::Mat imagetmp(1500, 1500, CV_8UC3, cv::Scalar(0, 0, 0));
|
|
|
|
|
cv::warpPerspective(_imgVec[i], imagetmp, H_Vec[i], imagetmp.size());
|
|
|
|
|
|
|
|
|
|
cv::Mat mask = cv::Mat::ones(_imgVec[i].size(), CV_8UC1) * 255;
|
|
|
|
|
cv::Mat warped_mask;
|
|
|
|
|
cv::warpPerspective(mask, warped_mask, H_Vec[i], image.size());
|
|
|
|
|
imagetmp.copyTo(image, warped_mask);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
imshow(winname, image);
|
|
|
|
|
cv::waitKey(1);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//#define SHOW_MATCH
|
|
|
|
|
SINT32 BA_Task::CalMatchMat(float fiou_thre)
|
|
|
|
|
{
|
|
|
|
|
_IOUMat = cv::Mat::zeros(_polygon.size(),_polygon.size(),CV_32FC1);
|
|
|
|
|
|
|
|
|
|
_MatchMat = cv::Mat::zeros(_polygon.size(), _polygon.size(), CV_32SC1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 先计算IOU矩阵
|
|
|
|
|
for (size_t i = 0; i < _polygon.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
vector<cv::Point2f> poly_i = _polygon[i];
|
|
|
|
|
|
|
|
|
|
for (size_t j = i + 1; j < _polygon.size(); j++)
|
|
|
|
|
{
|
|
|
|
|
if (i == j)
|
|
|
|
|
{
|
|
|
|
|
_IOUMat.at<float>(i,j) = 1;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
vector<cv::Point2f> poly_j = _polygon[j];
|
|
|
|
|
|
|
|
|
|
float fiou = computeQuadrilateralIOU(poly_i,poly_j);
|
|
|
|
|
_IOUMat.at<float>(i,j) = fiou;
|
|
|
|
|
_IOUMat.at<float>(j,i) = fiou;//是对称矩阵
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|