|
|
|
|
#include "Arith_BATask.h"
|
|
|
|
|
#define GLOG_USE_GLOG_EXPORT
|
|
|
|
|
#include "ceres/ceres.h"
|
|
|
|
|
#include "Arith_GeoSolver.h"
|
|
|
|
|
#include "math.h"
|
|
|
|
|
#include "Arith_Utils.h"
|
|
|
|
|
using namespace ceres;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define STABLE_X1 320
|
|
|
|
|
#define STABLE_Y1 256
|
|
|
|
|
|
|
|
|
|
#define STABLE_X2 0
|
|
|
|
|
#define STABLE_Y2 0
|
|
|
|
|
|
|
|
|
|
#define STABLE_X3 1920
|
|
|
|
|
#define STABLE_Y3 1080
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 定义残差结构体
|
|
|
|
|
struct HomographyResidual
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
HomographyResidual(const cv::KeyPoint& keypoint_i, const cv::KeyPoint& keypoint_j, const cv::Mat H1, const cv::Mat H2)
|
|
|
|
|
: keypoint_i_(keypoint_i), keypoint_j_(keypoint_j), Hi0_(H1), Hj0_(H2)
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
bool operator()(const T* const h_i, const T* const h_j, T* residual) const
|
|
|
|
|
{
|
|
|
|
|
// 残差计算逻辑
|
|
|
|
|
T H_i[9] = { h_i[0], h_i[1], h_i[2],
|
|
|
|
|
h_i[3], h_i[4], h_i[5],
|
|
|
|
|
h_i[6], h_i[7], T(1.0) };
|
|
|
|
|
|
|
|
|
|
T H_j[9] = { h_j[0], h_j[1], h_j[2],
|
|
|
|
|
h_j[3], h_j[4], h_j[5],
|
|
|
|
|
h_j[6], h_j[7], T(1.0) };
|
|
|
|
|
|
|
|
|
|
T p_i[3] = { T(keypoint_i_.pt.x), T(keypoint_i_.pt.y), T(1.0) };
|
|
|
|
|
T p_j[3] = { T(keypoint_j_.pt.x), T(keypoint_j_.pt.y), T(1.0) };
|
|
|
|
|
|
|
|
|
|
T P_i[3] = { T(0), T(0), T(0) };
|
|
|
|
|
T P_j[3] = { T(0), T(0), T(0) };
|
|
|
|
|
|
|
|
|
|
for (int row = 0; row < 3; row++)
|
|
|
|
|
{
|
|
|
|
|
for (int col = 0; col < 3; col++)
|
|
|
|
|
{
|
|
|
|
|
P_i[row] += H_i[row * 3 + col] * p_i[col];
|
|
|
|
|
P_j[row] += H_j[row * 3 + col] * p_j[col];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
P_i[0] /= P_i[2];
|
|
|
|
|
P_i[1] /= P_i[2];
|
|
|
|
|
P_j[0] /= P_j[2];
|
|
|
|
|
P_j[1] /= P_j[2];
|
|
|
|
|
|
|
|
|
|
// 1.添加重投影误差
|
|
|
|
|
residual[0] = P_i[0] - P_j[0];
|
|
|
|
|
residual[1] = P_i[1] - P_j[1];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 2. 不动点位置约束
|
|
|
|
|
cv::Point2f pS1 = warpPointWithH(Hi0_, cv::Point2f(STABLE_X1, STABLE_Y1));
|
|
|
|
|
cv::Point2f pS2 = warpPointWithH(Hi0_, cv::Point2f(STABLE_X2, STABLE_Y2));
|
|
|
|
|
cv::Point2f pS3 = warpPointWithH(Hi0_, cv::Point2f(STABLE_X3, STABLE_Y3));
|
|
|
|
|
|
|
|
|
|
T p_1[3] = { T(STABLE_X1), T(STABLE_Y1), T(1.0) };
|
|
|
|
|
T p_2[3] = { T(STABLE_X2), T(STABLE_Y2), T(1.0) };
|
|
|
|
|
T p_3[3] = { T(STABLE_X3), T(STABLE_Y3), T(1.0) };
|
|
|
|
|
|
|
|
|
|
T P_r1[3] = { T(0), T(0), T(0) };
|
|
|
|
|
T P_r2[3] = { T(0), T(0), T(0) };
|
|
|
|
|
T P_r3[3] = { T(0), T(0), T(0) };
|
|
|
|
|
|
|
|
|
|
for (int row = 0; row < 3; row++)
|
|
|
|
|
{
|
|
|
|
|
for (int col = 0; col < 3; col++)
|
|
|
|
|
{
|
|
|
|
|
P_r1[row] += H_i[row * 3 + col] * p_1[col];
|
|
|
|
|
P_r2[row] += H_i[row * 3 + col] * p_2[col];
|
|
|
|
|
P_r3[row] += H_i[row * 3 + col] * p_3[col];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
P_r1[0] /= P_r1[2];
|
|
|
|
|
P_r1[1] /= P_r1[2];
|
|
|
|
|
|
|
|
|
|
P_r2[0] /= P_r2[2];
|
|
|
|
|
P_r2[1] /= P_r2[2];
|
|
|
|
|
|
|
|
|
|
P_r3[0] /= P_r3[2];
|
|
|
|
|
P_r3[1] /= P_r3[2];
|
|
|
|
|
|
|
|
|
|
// 约束中心点投影位置不变
|
|
|
|
|
residual[2] = (P_r1[0] - (T)pS1.x);
|
|
|
|
|
residual[3] = P_r1[1] - (T)pS1.y;
|
|
|
|
|
|
|
|
|
|
residual[4] = (P_r2[0] - (T)pS2.x);
|
|
|
|
|
residual[5] = P_r2[1] - (T)pS2.y;
|
|
|
|
|
|
|
|
|
|
residual[6] = (P_r3[0] - (T)pS3.x);
|
|
|
|
|
residual[7] = P_r3[1] - (T)pS3.y;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
const cv::KeyPoint keypoint_i_; // 第 i 帧图像中的特征点
|
|
|
|
|
const cv::KeyPoint keypoint_j_; // 第 j 帧图像中的特征点
|
|
|
|
|
|
|
|
|
|
const cv::Mat Hi0_;
|
|
|
|
|
const cv::Mat Hj0_;
|
|
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BA_Task::BA_Task(FileCache<FrameCache>* cache)
|
|
|
|
|
{
|
|
|
|
|
_cache = cache;
|
|
|
|
|
_FeaMatcher = new FeatureMatcher(DetectorType::SIFT, MatcherType::FLANN);
|
|
|
|
|
|
|
|
|
|
//google::InitGoogleLogging("ceres");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BA_Task::~BA_Task()
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void BA_Task::InitTask()
|
|
|
|
|
{
|
|
|
|
|
_imgVec.clear();
|
|
|
|
|
_frameInd.clear();
|
|
|
|
|
_origMatrix.clear();
|
|
|
|
|
_currMatrix.clear();
|
|
|
|
|
_polygon.clear();
|
|
|
|
|
_FeaPtVec.clear();
|
|
|
|
|
_FeaDespVec.clear();
|
|
|
|
|
_paraVec.clear();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void BA_Task::OptFrame(vector<KeyType> frameInd,cv::Mat H_map)
|
|
|
|
|
{
|
|
|
|
|
// 任务容器初始化
|
|
|
|
|
InitTask();
|
|
|
|
|
|
|
|
|
|
// 读取帧信息
|
|
|
|
|
readFrameInfo(frameInd);
|
|
|
|
|
|
|
|
|
|
// 邻接关系计算
|
|
|
|
|
CalMatchMat();
|
|
|
|
|
|
|
|
|
|
// 开始BA
|
|
|
|
|
|
|
|
|
|
// 将 cv::Mat 转换为 Ceres 需要的数组形式
|
|
|
|
|
std::vector<double*> h_list(_currMatrix.size());
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < _currMatrix.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
h_list[i] = (double*)_currMatrix[i].data;
|
|
|
|
|
}
|
|
|
|
|
// 创建 Ceres 问题
|
|
|
|
|
ceres::Problem problem;
|
|
|
|
|
|
|
|
|
|
// 添加残差块
|
|
|
|
|
int nParaCnt = 0;//参数组数
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < _MatchMat.cols; i++)
|
|
|
|
|
{
|
|
|
|
|
for (int j = i + 1; j < _MatchMat.rows; j++)
|
|
|
|
|
{
|
|
|
|
|
// IOU满足条件才匹配特征点
|
|
|
|
|
if (_IOUMat.at<float>(i, j) < 0.3)
|
|
|
|
|
{
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<cv::DMatch> matches;
|
|
|
|
|
//_FeaMatcher->matchFeatures(_FeaDespVec[i],_FeaDespVec[j],matches);
|
|
|
|
|
_FeaMatcher->matchFeatures_WithH(_FeaPtVec[i], _FeaDespVec[i], _FeaPtVec[j], _FeaDespVec[j], _origMatrix[i], _origMatrix[j], matches);
|
|
|
|
|
|
|
|
|
|
// 图像特征匹配点对超过N对才认为有效
|
|
|
|
|
if (matches.size() > 50)
|
|
|
|
|
{
|
|
|
|
|
_MatchMat.at<int>(i, j) = matches.size();
|
|
|
|
|
_MatchMat.at<int>(j, i) = matches.size();
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
#ifdef SHOW_MATCH
|
|
|
|
|
// 绘制匹配结果
|
|
|
|
|
drawMatch(i, j, matches, H_map);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// 添加匹配点对的残差块
|
|
|
|
|
for (int m = 0; m < matches.size(); m++)
|
|
|
|
|
{
|
|
|
|
|
auto mc = matches[m];
|
|
|
|
|
// 注意:这里不对,应该找匹配点!! todo 节后完成
|
|
|
|
|
cv::KeyPoint keypoint_i = _FeaPtVec[i][mc.queryIdx];
|
|
|
|
|
cv::KeyPoint keypoint_j = _FeaPtVec[j][mc.trainIdx];
|
|
|
|
|
|
|
|
|
|
//ceres::LossFunction* loss_function = new ceres::HuberLoss(1.0);
|
|
|
|
|
ceres::LossFunction* scale_loss = new ceres::ScaledLoss(
|
|
|
|
|
new ceres::HuberLoss(1.0),
|
|
|
|
|
1.0, // 降低尺度约束的权重
|
|
|
|
|
ceres::TAKE_OWNERSHIP);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cv::Mat Hi0 = _origMatrix[i];
|
|
|
|
|
cv::Mat Hj0 = _origMatrix[j];
|
|
|
|
|
|
|
|
|
|
ceres::CostFunction* cost_function =
|
|
|
|
|
new ceres::AutoDiffCostFunction<HomographyResidual, 8, 8, 8>(
|
|
|
|
|
new HomographyResidual(keypoint_i, keypoint_j, Hi0, Hj0));
|
|
|
|
|
problem.AddResidualBlock(cost_function, scale_loss, h_list[i], h_list[j]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
nParaCnt += matches.size();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 配置求解器
|
|
|
|
|
ceres::Solver::Options options;
|
|
|
|
|
options.max_num_iterations = 2; // 增加最大迭代次数
|
|
|
|
|
options.function_tolerance = 1e-5; // 设置更严格的函数值容忍度
|
|
|
|
|
options.gradient_tolerance = 1e-5; // 设置更严格的梯度容忍度
|
|
|
|
|
options.parameter_tolerance = 1e-5; // 设置更严格的参数容忍度
|
|
|
|
|
options.minimizer_progress_to_stdout = true;
|
|
|
|
|
//options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; // 使用稀疏求解器
|
|
|
|
|
options.num_threads = 12; // 使用多线程
|
|
|
|
|
ceres::Solver::Summary summary;
|
|
|
|
|
|
|
|
|
|
// 求解
|
|
|
|
|
ceres::Solve(options, &problem, &summary);
|
|
|
|
|
|
|
|
|
|
//for (int i = 0; i < _currMatrix.size(); i++)
|
|
|
|
|
//{
|
|
|
|
|
// std::cout << "------------" << std::endl;
|
|
|
|
|
// std::cout << _origMatrix[i] << std::endl;
|
|
|
|
|
// std::cout << _currMatrix[i] << std::endl;
|
|
|
|
|
// std::cout << "------------" << std::endl;
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
// 输出结果
|
|
|
|
|
std::cout << summary.BriefReport() << std::endl;
|
|
|
|
|
|
|
|
|
|
// 写入缓存
|
|
|
|
|
writeFrameInfo();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool BA_Task::updateCacheH(KeyType Key, cv::Mat H)
|
|
|
|
|
{
|
|
|
|
|
auto _t_frame_cache = std::make_shared<FrameCache>();
|
|
|
|
|
|
|
|
|
|
if (_cache->get(Key, _t_frame_cache))
|
|
|
|
|
{
|
|
|
|
|
// 更新H
|
|
|
|
|
memcpy(_t_frame_cache->H, H.data, sizeof(double) * 9);
|
|
|
|
|
// 存储
|
|
|
|
|
_cache->set(Key, _t_frame_cache);
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int BA_Task::readFrameInfo(vector<KeyType> frameInd)
|
|
|
|
|
{
|
|
|
|
|
auto _t_frame_cache = std::make_shared<FrameCache>();
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < frameInd.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
KeyType key = frameInd[i];
|
|
|
|
|
if (_cache->get(key, _t_frame_cache))
|
|
|
|
|
{
|
|
|
|
|
// 记录key
|
|
|
|
|
_frameInd.push_back(key);
|
|
|
|
|
|
|
|
|
|
// 特征点
|
|
|
|
|
vector<cv::KeyPoint> keypoints(_t_frame_cache->_pt, _t_frame_cache->_pt + _t_frame_cache->ptNum);
|
|
|
|
|
_FeaPtVec.push_back(keypoints);
|
|
|
|
|
// 描述子
|
|
|
|
|
cv::Mat descriptors(_t_frame_cache->ptNum, FEA_DES_SIZE, CV_32FC1, _t_frame_cache->_desp);
|
|
|
|
|
_FeaDespVec.push_back(descriptors.clone());
|
|
|
|
|
// 原始外参
|
|
|
|
|
_paraVec.push_back(_t_frame_cache->_para);
|
|
|
|
|
|
|
|
|
|
// 初始H
|
|
|
|
|
cv::Mat H = cv::Mat(3, 3, CV_64FC1, _t_frame_cache->H);
|
|
|
|
|
_origMatrix.push_back(H.clone());
|
|
|
|
|
_currMatrix.push_back(H.clone());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 缓存包围多边形
|
|
|
|
|
_polygon.push_back(warpRectWithH(H, cv::Size(_t_frame_cache->_frame_info.u32Width, _t_frame_cache->_frame_info.u32Height)));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef SHOW_MATCH
|
|
|
|
|
// 读取图像
|
|
|
|
|
cv::Mat img = getRGBAMatFromGDFrame(_t_frame_cache->_frame_info, _t_frame_cache->_data);
|
|
|
|
|
_imgVec.push_back(img.clone());
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int BA_Task::writeFrameInfo()
|
|
|
|
|
{
|
|
|
|
|
for (size_t i = 0; i < _currMatrix.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
auto Key = _frameInd[i];
|
|
|
|
|
|
|
|
|
|
// 更新缓存
|
|
|
|
|
updateCacheH(Key, _currMatrix[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
SINT32 BA_Task::CalMatchMat()
|
|
|
|
|
{
|
|
|
|
|
_IOUMat = cv::Mat::zeros(_polygon.size(), _polygon.size(), CV_32FC1);
|
|
|
|
|
|
|
|
|
|
_MatchMat = cv::Mat::zeros(_polygon.size(), _polygon.size(), CV_32SC1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 先计算IOU矩阵
|
|
|
|
|
for (size_t i = 0; i < _polygon.size(); i++)
|
|
|
|
|
{
|
|
|
|
|
vector<cv::Point2f> poly_i = _polygon[i];
|
|
|
|
|
|
|
|
|
|
for (size_t j = i + 1; j < _polygon.size(); j++)
|
|
|
|
|
{
|
|
|
|
|
if (i == j)
|
|
|
|
|
{
|
|
|
|
|
_IOUMat.at<float>(i, j) = 1;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
vector<cv::Point2f> poly_j = _polygon[j];
|
|
|
|
|
|
|
|
|
|
float fiou = computeQuadrilateralIOU(poly_i, poly_j);
|
|
|
|
|
_IOUMat.at<float>(i, j) = fiou;
|
|
|
|
|
_IOUMat.at<float>(j, i) = fiou;//是对称矩阵
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void BA_Task::drawMatch(int i, int j, std::vector<cv::DMatch> matches, cv::Mat H_map)
|
|
|
|
|
{
|
|
|
|
|
//cv::Mat image(1000, 1000, CV_8UC3, cv::Scalar(0, 0, 0));
|
|
|
|
|
//cv::Mat imagetmp(1000, 1000, CV_8UC3, cv::Scalar(0, 0, 0));
|
|
|
|
|
//vector<vector<cv::Point2f>> tmpPoly;
|
|
|
|
|
//tmpPoly.push_back(_polygon[i]);
|
|
|
|
|
//tmpPoly.push_back(_polygon[j]);
|
|
|
|
|
|
|
|
|
|
//cv::warpPerspective(_imgVec[i], imagetmp, H_map * _origMatrix[i], imagetmp.size());
|
|
|
|
|
|
|
|
|
|
//// 生成遮罩(全白图像,表示有效区域)
|
|
|
|
|
//cv::Mat mask1 = cv::Mat::ones(_imgVec[i].size(), CV_8UC1) * 255;
|
|
|
|
|
//cv::Mat warped_mask1;
|
|
|
|
|
//cv::warpPerspective(mask1, warped_mask1, H_map * _origMatrix[i], image.size());
|
|
|
|
|
|
|
|
|
|
//imagetmp.copyTo(image, warped_mask1);
|
|
|
|
|
|
|
|
|
|
//cv::warpPerspective(_imgVec[j], imagetmp, H_map * _origMatrix[j], imagetmp.size());
|
|
|
|
|
//cv::Mat mask2 = cv::Mat::ones(_imgVec[i].size(), CV_8UC1) * 255;
|
|
|
|
|
//cv::Mat warped_mask2;
|
|
|
|
|
//cv::warpPerspective(mask2, warped_mask2, H_map * _origMatrix[j], image.size());
|
|
|
|
|
|
|
|
|
|
//imagetmp.copyTo(image, warped_mask2);
|
|
|
|
|
|
|
|
|
|
//drawPolygons(image, tmpPoly);
|
|
|
|
|
|
|
|
|
|
//// 显示绘制结果
|
|
|
|
|
//cv::imshow("Polygons", image);
|
|
|
|
|
//cv::waitKey(1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 可视化匹配结果
|
|
|
|
|
cv::Mat img_matches;
|
|
|
|
|
cv::drawMatches(
|
|
|
|
|
_imgVec[i], _FeaPtVec[i], // 第一幅图像及其特征点
|
|
|
|
|
_imgVec[j], _FeaPtVec[j], // 第二幅图像及其特征点
|
|
|
|
|
matches, // 匹配结果
|
|
|
|
|
img_matches, // 输出图像
|
|
|
|
|
cv::Scalar::all(-1), // 匹配线颜色(默认随机颜色)
|
|
|
|
|
cv::Scalar::all(-1), // 未匹配点颜色(默认不绘制)
|
|
|
|
|
std::vector<char>(), // 掩码(可选,用于筛选匹配)
|
|
|
|
|
cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS // 不绘制未匹配的点
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
cv::resize(img_matches, img_matches, cv::Size(1280, 512));
|
|
|
|
|
|
|
|
|
|
// 显示匹配结果
|
|
|
|
|
cv::imshow("Feature Matches", img_matches);
|
|
|
|
|
cv::waitKey(0);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 函数:绘制多边形
|
|
|
|
|
void drawPolygons(cv::Mat& image, const std::vector<std::vector<cv::Point2f>>& polygons)
|
|
|
|
|
{
|
|
|
|
|
// 定义颜色列表
|
|
|
|
|
std::vector<cv::Scalar> colors = {
|
|
|
|
|
cv::Scalar(255, 0, 0), // 蓝色
|
|
|
|
|
cv::Scalar(0, 255, 0), // 绿色
|
|
|
|
|
cv::Scalar(0, 0, 255), // 红色
|
|
|
|
|
cv::Scalar(255, 255, 0), // 青色
|
|
|
|
|
cv::Scalar(255, 0, 255), // 品红
|
|
|
|
|
cv::Scalar(0, 255, 255) // 黄色
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// 绘制每个多边形
|
|
|
|
|
for (size_t i = 0; i < polygons.size(); ++i) {
|
|
|
|
|
const auto& polygon = polygons[i];
|
|
|
|
|
cv::Scalar color = colors[i % colors.size()]; // 循环使用颜色
|
|
|
|
|
|
|
|
|
|
// 将多边形点转换为整数类型
|
|
|
|
|
std::vector<cv::Point> intPolygon;
|
|
|
|
|
for (const auto& pt : polygon) {
|
|
|
|
|
intPolygon.push_back(cv::Point(static_cast<int>(pt.x), static_cast<int>(pt.y)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 绘制多边形
|
|
|
|
|
cv::polylines(image, intPolygon, true, color, 2);
|
|
|
|
|
}
|
|
|
|
|
}
|