You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
8.7 KiB
217 lines
8.7 KiB
|
5 months ago
|
// Ceres Solver - A fast non-linear least squares minimizer
|
||
|
|
// Copyright 2023 Google Inc. All rights reserved.
|
||
|
|
// http://ceres-solver.org/
|
||
|
|
//
|
||
|
|
// Redistribution and use in source and binary forms, with or without
|
||
|
|
// modification, are permitted provided that the following conditions are met:
|
||
|
|
//
|
||
|
|
// * Redistributions of source code must retain the above copyright notice,
|
||
|
|
// this list of conditions and the following disclaimer.
|
||
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
|
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
|
// and/or other materials provided with the distribution.
|
||
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
|
|
// used to endorse or promote products derived from this software without
|
||
|
|
// specific prior written permission.
|
||
|
|
//
|
||
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
//
|
||
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
|
|
||
|
|
#ifndef CERES_PUBLIC_NUMERIC_DIFF_FIRST_ORDER_FUNCTION_H_
|
||
|
|
#define CERES_PUBLIC_NUMERIC_DIFF_FIRST_ORDER_FUNCTION_H_
|
||
|
|
|
||
|
|
#include <algorithm>
|
||
|
|
#include <memory>
|
||
|
|
|
||
|
|
#include "ceres/first_order_function.h"
|
||
|
|
#include "ceres/internal/eigen.h"
|
||
|
|
#include "ceres/internal/fixed_array.h"
|
||
|
|
#include "ceres/internal/numeric_diff.h"
|
||
|
|
#include "ceres/internal/parameter_dims.h"
|
||
|
|
#include "ceres/internal/variadic_evaluate.h"
|
||
|
|
#include "ceres/numeric_diff_options.h"
|
||
|
|
#include "ceres/types.h"
|
||
|
|
#include "glog/logging.h"
|
||
|
|
|
||
|
|
namespace ceres {
|
||
|
|
|
||
|
|
// Creates FirstOrderFunctions as needed by the GradientProblem
|
||
|
|
// framework, with gradients computed via numeric differentiation. For
|
||
|
|
// more information on numeric differentiation, see the wikipedia
|
||
|
|
// article at https://en.wikipedia.org/wiki/Numerical_differentiation
|
||
|
|
//
|
||
|
|
// To get an numerically differentiated cost function, you must define
|
||
|
|
// a class with an operator() (a functor) that computes the cost.
|
||
|
|
//
|
||
|
|
// The function must write the computed value in the last argument
|
||
|
|
// (the only non-const one) and return true to indicate success.
|
||
|
|
//
|
||
|
|
// For example, consider a scalar error e = x'y - a, where both x and y are
|
||
|
|
// two-dimensional column vector parameters, the prime sign indicates
|
||
|
|
// transposition, and a is a constant.
|
||
|
|
//
|
||
|
|
// To write an numerically-differentiable cost function for the above model,
|
||
|
|
// first define the object
|
||
|
|
//
|
||
|
|
// class QuadraticCostFunctor {
|
||
|
|
// public:
|
||
|
|
// explicit QuadraticCostFunctor(double a) : a_(a) {}
|
||
|
|
// bool operator()(const double* const xy, double* cost) const {
|
||
|
|
// constexpr int kInputVectorLength = 2;
|
||
|
|
// const double* const x = xy;
|
||
|
|
// const double* const y = xy + kInputVectorLength;
|
||
|
|
// *cost = x[0] * y[0] + x[1] * y[1] - a_;
|
||
|
|
// return true;
|
||
|
|
// }
|
||
|
|
//
|
||
|
|
// private:
|
||
|
|
// double a_;
|
||
|
|
// };
|
||
|
|
//
|
||
|
|
//
|
||
|
|
// Note that in the declaration of operator() the input parameters xy
|
||
|
|
// come first, and are passed as const pointers to array of
|
||
|
|
// doubles. The output cost is the last parameter.
|
||
|
|
//
|
||
|
|
// Then given this class definition, the numerically differentiated
|
||
|
|
// first order function with central differences used for computing the
|
||
|
|
// derivative can be constructed as follows.
|
||
|
|
//
|
||
|
|
// FirstOrderFunction* function
|
||
|
|
// = new NumericDiffFirstOrderFunction<MyScalarCostFunctor, CENTRAL, 4>(
|
||
|
|
// new QuadraticCostFunctor(1.0)); ^ ^ ^
|
||
|
|
// | | |
|
||
|
|
// Finite Differencing Scheme -+ | |
|
||
|
|
// Dimension of xy ------------------------+
|
||
|
|
//
|
||
|
|
//
|
||
|
|
// In the instantiation above, the template parameters following
|
||
|
|
// "QuadraticCostFunctor", "CENTRAL, 4", describe the finite
|
||
|
|
// differencing scheme as "central differencing" and the functor as
|
||
|
|
// computing its cost from a 4 dimensional input.
|
||
|
|
//
|
||
|
|
// If the size of the parameter vector is not known at compile time, then an
|
||
|
|
// alternate construction syntax can be used:
|
||
|
|
//
|
||
|
|
// FirstOrderFunction* function
|
||
|
|
// = new NumericDiffFirstOrderFunction<MyScalarCostFunctor, CENTRAL>(
|
||
|
|
// new QuadraticCostFunctor(1.0), 4);
|
||
|
|
//
|
||
|
|
// Note that instead of passing 4 as a template argument, it is now passed as
|
||
|
|
// the second argument to the constructor.
|
||
|
|
template <typename FirstOrderFunctor,
|
||
|
|
NumericDiffMethodType kMethod,
|
||
|
|
int kNumParameters = DYNAMIC>
|
||
|
|
class NumericDiffFirstOrderFunction final : public FirstOrderFunction {
|
||
|
|
public:
|
||
|
|
// Constructor for the case where the parameter size is known at compile time.
|
||
|
|
explicit NumericDiffFirstOrderFunction(
|
||
|
|
FirstOrderFunctor* functor,
|
||
|
|
Ownership ownership = TAKE_OWNERSHIP,
|
||
|
|
const NumericDiffOptions& options = NumericDiffOptions())
|
||
|
|
: functor_(functor),
|
||
|
|
num_parameters_(kNumParameters),
|
||
|
|
ownership_(ownership),
|
||
|
|
options_(options) {
|
||
|
|
static_assert(kNumParameters != DYNAMIC,
|
||
|
|
"Number of parameters must be static when defined via the "
|
||
|
|
"template parameter. Use the other constructor for "
|
||
|
|
"dynamically sized functions.");
|
||
|
|
static_assert(kNumParameters > 0, "kNumParameters must be positive");
|
||
|
|
}
|
||
|
|
|
||
|
|
// Constructor for the case where the parameter size is specified at run time.
|
||
|
|
explicit NumericDiffFirstOrderFunction(
|
||
|
|
FirstOrderFunctor* functor,
|
||
|
|
int num_parameters,
|
||
|
|
Ownership ownership = TAKE_OWNERSHIP,
|
||
|
|
const NumericDiffOptions& options = NumericDiffOptions())
|
||
|
|
: functor_(functor),
|
||
|
|
num_parameters_(num_parameters),
|
||
|
|
ownership_(ownership),
|
||
|
|
options_(options) {
|
||
|
|
static_assert(
|
||
|
|
kNumParameters == DYNAMIC,
|
||
|
|
"Template parameter must be DYNAMIC when using this constructor. If "
|
||
|
|
"you want to provide the number of parameters statically use the other "
|
||
|
|
"constructor.");
|
||
|
|
CHECK_GT(num_parameters, 0);
|
||
|
|
}
|
||
|
|
|
||
|
|
~NumericDiffFirstOrderFunction() override {
|
||
|
|
if (ownership_ != TAKE_OWNERSHIP) {
|
||
|
|
functor_.release();
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
bool Evaluate(const double* const parameters,
|
||
|
|
double* cost,
|
||
|
|
double* gradient) const override {
|
||
|
|
// Get the function value (cost) at the the point to evaluate.
|
||
|
|
if (!(*functor_)(parameters, cost)) {
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
if (gradient == nullptr) {
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
// Create a copy of the parameters which will get mutated.
|
||
|
|
internal::FixedArray<double, 32> parameters_copy(num_parameters_);
|
||
|
|
std::copy_n(parameters, num_parameters_, parameters_copy.data());
|
||
|
|
double* parameters_ptr = parameters_copy.data();
|
||
|
|
constexpr int kNumResiduals = 1;
|
||
|
|
if constexpr (kNumParameters == DYNAMIC) {
|
||
|
|
internal::FirstOrderFunctorAdapter<FirstOrderFunctor> fofa(*functor_);
|
||
|
|
return internal::NumericDiff<
|
||
|
|
internal::FirstOrderFunctorAdapter<FirstOrderFunctor>,
|
||
|
|
kMethod,
|
||
|
|
kNumResiduals,
|
||
|
|
internal::DynamicParameterDims,
|
||
|
|
0,
|
||
|
|
DYNAMIC>::EvaluateJacobianForParameterBlock(&fofa,
|
||
|
|
cost,
|
||
|
|
options_,
|
||
|
|
kNumResiduals,
|
||
|
|
0,
|
||
|
|
num_parameters_,
|
||
|
|
¶meters_ptr,
|
||
|
|
gradient);
|
||
|
|
} else {
|
||
|
|
return internal::EvaluateJacobianForParameterBlocks<
|
||
|
|
internal::StaticParameterDims<kNumParameters>>::
|
||
|
|
template Apply<kMethod, 1>(functor_.get(),
|
||
|
|
cost,
|
||
|
|
options_,
|
||
|
|
kNumResiduals,
|
||
|
|
¶meters_ptr,
|
||
|
|
&gradient);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
int NumParameters() const override { return num_parameters_; }
|
||
|
|
|
||
|
|
const FirstOrderFunctor& functor() const { return *functor_; }
|
||
|
|
|
||
|
|
private:
|
||
|
|
std::unique_ptr<FirstOrderFunctor> functor_;
|
||
|
|
const int num_parameters_;
|
||
|
|
const Ownership ownership_;
|
||
|
|
const NumericDiffOptions options_;
|
||
|
|
};
|
||
|
|
|
||
|
|
} // namespace ceres
|
||
|
|
|
||
|
|
#endif // CERES_PUBLIC_NUMERIC_DIFF_FIRST_ORDER_FUNCTION_H_
|