You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

479 lines
12 KiB

#include "Arith_GeoSolver.h"
#include "Arith_UnderStitch.h"
#include "Arith_Utils.h"
#include "Arith_CoordModule.h"
#include "Arith_SysStruct.h"
//#define GLOG_USE_GLOG_EXPORT
using namespace cv;
GeoSolver::GeoSolver()
{
}
GeoSolver::~GeoSolver()
{
}
//cv::Point2f GeoSolver::project(cv::Point2f pos_pan, Proj m_Proj, PanInfo pan)
//{
// cv::Point2f pos_geo = Trans_pan2Geo(pos_pan, pan);
// cv::Point2f pos_frame = Trans_Geo2uv(pos_geo, m_Proj.tf_g2p);
// return pos_frame;
//}
//
//cv::Point2f GeoSolver::back_project(cv::Point2f pos_frame, Proj m_Proj, PanInfo pan)
//{
// cv::Point2f pos_geo = Trans_uv2Geo(pos_frame, m_Proj.tf_p2g);
//
// cv::Point2f pos_pan = Trans_Geo2pan(pos_geo, pan);
//
// return pos_pan;
//}
void GeoSolver::SetOriginPoint(FrameInfo info)
{
originCGCSPoint = getXYZFromBLH(info.craft.stPos);
origininfo = info;
return;
}
PointXYZ GeoSolver::GetOriginPoint()
{
return originCGCSPoint;
}
int GeoSolver::GetOriginDHeight()
{
return origininfo.nEvHeight;
}
PointBLH GeoSolver::getBLHFromFrame(cv::Mat H, cv::Point2f pt)
{
cv::Point2f pt_Geo = warpPointWithH(H, pt);
return getBLHFromGeo(pt_Geo);
}
PointBLH GeoSolver::getBLHFromGeo(cv::Point2f ptInGeo)
{
PointXYZ ptNUE = { 0 };
// 本模块使用的地理系是东(x)-北(y)-地(z),需要转换一下
ptNUE.X = ptInGeo.y;
ptNUE.Y = -origininfo.nEvHeight;
ptNUE.Z = ptInGeo.x;
PointBLH res = getBLHFromXYZ(getCGCSXYZFromNUEXYZ(ptNUE, originCGCSPoint));
return res;
}
cv::Point2f GeoSolver::getGeoFromBLH(PointBLH ptPos)
{
cv::Point2f ptInGeo = { 0 };
PointXYZ ptNUE = { 0 };
ptNUE = getNUEXYZFromCGCSXYZ(getXYZFromBLH(ptPos), originCGCSPoint);
// 本模块使用的地理系是东(x)-北(y)-地(z),需要转换一下
ptInGeo.x = ptNUE.Z;
ptInGeo.y = ptNUE.X;
return ptInGeo;
}
// cv::Point2f GeoSolver::Trans_uv2Geo(cv::Point2f pos_frame, TForm form)
// {
// Mat point = (Mat_<double>(3, 1) << pos_frame.x, pos_frame.y, 1);
// Mat result = form.R * point;
// // 转局部地理系
// double warpedX = result.at<double>(0, 0) / result.at<double>(2, 0);
// double warpedY = result.at<double>(1, 0) / result.at<double>(2, 0);
// // 平移到原点地理系
// warpedX += form.T.at<double>(0, 0);
// warpedY += form.T.at<double>(1, 0);
// return cv::Point2f(warpedX, warpedY);
// }
// cv::Point2f GeoSolver::Trans_Geo2uv(cv::Point2f pos_geo, TForm form_inv)
// {
// // 先平移到当前相机位置
// cv::Point2f pos_cam = pos_geo;
// pos_cam.x = pos_geo.x + form_inv.T.at<double>(0, 0);
// pos_cam.y = pos_geo.y + form_inv.T.at<double>(1, 0);
// Mat point = (Mat_<double>(3, 1) << pos_cam.x, pos_cam.y, 1);
// Mat result = form_inv.R * point;
// // 转像方
// double warpedX = result.at<double>(0, 0) / result.at<double>(2, 0);
// double warpedY = result.at<double>(1, 0) / result.at<double>(2, 0);
// return cv::Point2f(warpedX, warpedY);
// }
Mat GeoSolver::Mat_TransENGMove(FrameInfo info)
{
PointXYZ ptCurr = getXYZFromBLH(info.craft.stPos);
PointXYZ diff = getNUEXYZFromCGCSXYZ(ptCurr, originCGCSPoint);
Mat move = Mat::zeros(3, 1, CV_64F);
move.at<double>(0, 0) = diff.Z;
move.at<double>(1, 0) = diff.X;
move.at<double>(2, 0) = -diff.Y;
return move;
}
Mat GeoSolver::Mat_TransENG2uv(FrameInfo info)
{
//从地理坐标系转像素坐标
//[u,v,1]'=Z*M*[X,Y,DH]' = Z*M*[1,0,0;0,1,0;0,0,DH]'*[X,Y,1]'
//[u,v,1]'=Z*M(内参)*M(alaph)*M(beta)*M(roll)*M(pitch)*M(yaw)*[X,Y,DH]
// 深度矩阵
Mat M_het = (Mat_<double>(3, 3) << 1, 0, 0,
0, 1, 0,
0, 0, info.nEvHeight
);
Mat M = Mat_GetCamK(info) * Mat_TransENG2Cam(info) * M_het;
return M;
}
using namespace std;
cv::Mat GeoSolver::Mat_TransENG2Cam(FrameInfo info)
{
float yaw = info.craft.stAtt.fYaw;
Mat M_yaw = (Mat_<double>(3, 3) << cosd(yaw), -sind(yaw), 0,
sind(yaw), cosd(yaw), 0,
0, 0, 1
);
float pit = info.craft.stAtt.fPitch;
Mat M_pitch = (Mat_<double>(3, 3) << 1, 0, 0,
0, cosd(pit), -sind(pit),
0, sind(pit), cosd(pit)
);
/* 1 0 0
0 cos sin
0 -sin cos
*/
float roll = info.craft.stAtt.fRoll;
Mat M_roll = (Mat_<double>(3, 3) << cosd(roll), 0, sind(roll),
0, 1, 0,
-sind(roll), 0, cosd(roll)
);
float beta = info.servoInfo.fServoAz;
Mat M_beta = (Mat_<double>(3, 3) << cosd(beta), -sind(beta), 0,
sind(beta), cosd(beta), 0,
0, 0, 1
);
float alaph = info.servoInfo.fServoPt;
Mat M_alaph = (Mat_<double>(3, 3) << 1, 0, 0,
0, cosd(alaph), -sind(alaph),
0, sind(alaph), cosd(alaph)
);
Mat M =M_alaph * M_beta * M_roll * M_pitch * M_yaw;
return M;
}
cv::Mat GeoSolver::Mat_GetCamK(FrameInfo info)
{
// 内参
FLOAT32 fd = info.camInfo.nFocus / info.camInfo.fPixelSize * 1000;
Mat M_cam = (Mat_<double>(3, 3) << fd, 0, info.nWidth / 2,
0, -fd, info.nHeight / 2,
0, 0, 1
);
return M_cam;
}
RtK GeoSolver::AnlayseRtK(FrameInfo info)
{
RtK rtk;
rtk.R = Mat_TransENG2Cam(info);
rtk.T = Mat_TransENGMove(info);
rtk.K = Mat_GetCamK(info);
return rtk;
}
cv::Mat TransRtKToH(RtK rtk, double Depth)
{
// 深度矩阵
Mat M_het = (Mat_<double>(3, 3) << 1, 0, 0,
0, 1, 0,
0, 0, Depth
);
// cv::Mat R_p2g = (rtk.K * rtk.R * M_het).inv();
// //cv::Mat R_p2g = R_g2p.inv();
// cv::Mat t_MAT = rtk.T;
// double R[9] = { 0 };
// double T[3] = { 0 };
// memcpy(R, R_p2g.data, sizeof(double) * 9);
// memcpy(T, t_MAT.data, sizeof(double) * 3);
// Mat H = (Mat_<double>(3, 3) << (R[0] + T[0] * R[6]), (R[1] + T[0] * R[7]), (R[2] + T[0] * R[8]),
// (R[3] + T[1] * R[6]), (R[4] + T[1] * R[7]), (R[5] + T[1] * R[8]),
// R[6], R[7], R[8]);
// // 归一化
// H = H / H.at<double>(2, 2);
// 地面法向量 n_w向上方向Z轴正方向在地理坐标系中
cv::Mat n_w = (cv::Mat_<double>(3, 1) << 0, 0, 1);
// 平面到相机的距离(有效高度)
double d = Depth;
cv::Mat I = cv::Mat::eye(3, 3, CV_64F);
// 计算 (T_geo * n_w^T) / d
cv::Mat TnT = (rtk.R * rtk.T *n_w.t()) / d;
// 计算从地理坐标到像素坐标的单应性矩阵
cv::Mat H_geo_to_pixel = rtk.K * (rtk.R - TnT) * M_het;
cv::Mat H = H_geo_to_pixel.inv();
// 归一化(使 H[2,2] = 1
H = H / H.at<double>(2, 2);
return H.clone();
}
cv::Mat Transe3ToH(double* se3, cv::Mat K, double Depth)
{
RtK rtk;
cv::Rodrigues(cv::Mat(3, 1, CV_64FC1, se3), rtk.R);
//cv::Mat w, u, vt;
//cv::SVD::compute(rtk.R, w, u, vt);
//// 核心:确保 u * vt 是精确的正交矩阵
//// 而不是直接对R进行尺度归一化
//rtk.R = u * vt;
rtk.T = cv::Mat(3, 1, CV_64FC1, se3 + 3);
rtk.K = K;
return TransRtKToH(rtk, Depth);
}
// 根据R和t解析H
// cv::Mat GeoSolver::findHomography(FrameInfo info)
// {
// cv::Mat Rmat = Mat_TransENG2uv(info).inv();
// cv::Mat Tmat = Mat_TransENGMove(info);
// double R[9] = { 0 };
// double T[3] = { 0 };
// memcpy(R, Rmat.data, sizeof(double) * 9);
// memcpy(T, Tmat.data, sizeof(double) * 3);
// Mat H = (Mat_<double>(3, 3) << (R[0] + T[0] * R[6]), (R[1] + T[0] * R[7]), (R[2] + T[0] * R[8]),
// (R[3] + T[1] * R[6]), (R[4] + T[1] * R[7]), (R[5] + T[1] * R[8]),
// R[6], R[7], R[8]);
// // 归一化
// H = H / H.at<double>(2, 2);
// return H;
// }
cv::Mat GeoSolver::findHomography(FrameInfo info)
{
// 获取相机内参矩阵 K
cv::Mat Kmat = Mat_GetCamK(info);
// 获取从地理坐标系到相机坐标系的旋转矩阵 R_geo_to_cam
cv::Mat R_geo_to_cam = Mat_TransENG2Cam(info);
// 获取平移向量 T从原点地理坐标系到当前相机位置地理坐标系
cv::Mat T_geo = Mat_TransENGMove(info);
// 深度矩阵
Mat M_het = (Mat_<double>(3, 3) << 1, 0, 0,
0, 1, 0,
0, 0, info.nEvHeight
);
// 地面法向量 n_w向上方向Z轴正方向在地理坐标系中
cv::Mat n_w = (cv::Mat_<double>(3, 1) << 0, 0, 1);
// 平面到相机的距离(有效高度)
double d = info.nEvHeight;
cv::Mat I = cv::Mat::eye(3, 3, CV_64F);
// 计算 (T_geo * n_w^T) / d
cv::Mat TnT = (R_geo_to_cam * T_geo *n_w.t()) / d;
// 计算从地理坐标到像素坐标的单应性矩阵
cv::Mat H_geo_to_pixel = Kmat * (R_geo_to_cam - TnT) * M_het;
cv::Mat H = H_geo_to_pixel.inv();
// 归一化(使 H[2,2] = 1
H = H / H.at<double>(2, 2);
return H.clone();
}
cv::Mat GeoSolver::findHomography(FrameInfo info, RtK& rtk)
{
rtk = AnlayseRtK(info);
cv::Mat H = TransRtKToH(rtk,info.nEvHeight);
return H;
}
// 计算多边形的面积
double polygonArea(const vector<cv::Point2f>& points)
{
double area = 0.0;
int n = points.size();
for (int i = 0; i < n; i++) {
int j = (i + 1) % n;
area += points[i].x * points[j].y - points[j].x * points[i].y;
}
return abs(area) / 2.0;
}
// 计算两个四边形的 IOU
double computeQuadrilateralIOU(const vector<cv::Point2f>& quad1, const vector<cv::Point2f>& quad2)
{
// 将四边形转换为多边形
vector<Point2f> poly1 = quad1;
vector<Point2f> poly2 = quad2;
// 计算交集多边形
vector<Point2f> intersectionPolygon;
intersectConvexConvex(poly1, poly2, intersectionPolygon);
// 计算面积
double area1 = polygonArea(poly1);
double area2 = polygonArea(poly2);
double intersectionArea = polygonArea(intersectionPolygon);
double unionArea = area1 + area2 - intersectionArea;
// 计算 IOU
if (unionArea == 0) return 0.0; // 避免除零错误
return intersectionArea / unionArea;
}
cv::Point2f warpPointWithH(cv::Mat H, cv::Point2f srcPt)
{
Mat point = (Mat_<double>(3, 1) << srcPt.x, srcPt.y, 1);
Mat result = H * point;
// 转局部地理系
double warpedX = result.at<double>(0, 0) / result.at<double>(2, 0);
double warpedY = result.at<double>(1, 0) / result.at<double>(2, 0);
return cv::Point2f(warpedX,warpedY);
}
vector<cv::Point2f> warpRectWithH(cv::Mat H,cv::Size size)
{
vector<cv::Point2f> _res;
_res.push_back(warpPointWithH(H, cv::Point2f(0,0)));
_res.push_back(warpPointWithH(H, cv::Point2f(size.width,0)));
_res.push_back(warpPointWithH(H, cv::Point2f(size.width,size.height)));
_res.push_back(warpPointWithH(H, cv::Point2f(0,size.height)));
return _res;
}
cv::Rect2f warpRectWithH_2Rect(cv::Mat H, cv::Size size)
{
vector<cv::Point2f> dstCorners = warpRectWithH(H, size);
// 找到变换后图像的边界
float minX = MIN(MIN(dstCorners[0].x, dstCorners[1].x), MIN(dstCorners[2].x, dstCorners[3].x));
float minY = MIN(MIN(dstCorners[0].y, dstCorners[1].y), MIN(dstCorners[2].y, dstCorners[3].y));
float maxX = MAX(MAX(dstCorners[0].x, dstCorners[1].x), MAX(dstCorners[2].x, dstCorners[3].x));
float maxY = MAX(MAX(dstCorners[0].y, dstCorners[1].y), MAX(dstCorners[2].y, dstCorners[3].y));
// 变换后结果的rect
cv::Rect2f roi(minX, minY, maxX - minX, maxY - minY);
return roi;
}
cv::Point2f warpPointWithse3(const double* se3, double depth, cv::Mat K, cv::Point2f srcPt)
{
Mat point = (Mat_<double>(3, 1) << srcPt.x, srcPt.y, 1.0);
// 轴角转R
cv::Mat rvec = (Mat_<double>(3, 1) << -se3[0], -se3[1], -se3[2]);
cv::Mat tvec = (Mat_<double>(3, 1) << se3[3], se3[4], se3[5]);
cv::Mat R;
cv::Rodrigues(rvec, R);
// 深度矩阵
Mat M_het_inv = (Mat_<double>(3, 3) << 1, 0, 0,
0, 1, 0,
0, 0, 1.0/depth
);
// 转地理系
Mat result = M_het_inv * R * K.inv() * point;
// 说明ceres::AngleAxisRotatePoint有效结果等效于cv::Rodrigues
//double resP[3] = { 0 };
//cv::Mat pt = (K.inv() * point);
//ceres::AngleAxisRotatePoint((double*)rvec.data, (double*)pt.data, (double*)resP);
//result = M_het_inv * cv::Mat(3, 1, CV_64FC1, resP);
// 转局部地理系
double warpedX = result.at<double>(0, 0) / result.at<double>(2, 0);
double warpedY = result.at<double>(1, 0) / result.at<double>(2, 0);
warpedX += tvec.at<double>(0, 0);
warpedY += tvec.at<double>(1, 0);
return cv::Point2f(warpedX,warpedY);
}