You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

142 lines
3.8 KiB

7 months ago
// 单目标对空跟踪流程测试关注跟踪器FPS
#include "NeoArithStandardDll.h"
#include "utils.h"
#include <iostream>
#include <memory>
#include <string.h>
#include <algorithm>
#include <thread>
#include "opencv2/opencv.hpp"
using std::cout;
using std::endl;
int main()
{
// 产生一个仿真Y16数据
int nWidth = 640;
int nHeight = 512;
SimTargetImage_Y16 factory(nWidth, nHeight);
factory.setBackGround(5000, 10);
// 叠加一个初始目标
float moveX = 100;
float moveY = 100;
float size = 3;
float spdx = 1;
float spdy = 1;
factory.addTarget(moveX, moveY, size, size, 6500);
// 创建算法句柄
ArithHandle pTracker = STD_CreatEOArithHandle();
// 初始化为凝视-对空模式
ARIDLL_EOArithInitWithMode(pTracker,nWidth,nHeight,GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_GRAY_Y16,
GLB_SYS_MODE::GLB_SYS_STARE,GLB_SCEN_MODE::GLB_SCEN_SKY);
// 算法输入部分
ARIDLL_INPUTPARA stInputPara = { 0 };
stInputPara.unFrmId++;
stInputPara.stCameraInfo.fPixelSize = 15;
stInputPara.stCameraInfo.nFocus = 300;
// 算法输出部分
ARIDLL_OUTPUT stOutput = { 0 };
//cv::VideoWriter writer("output.avi",cv::VideoWriter::fourcc('M', 'J', 'P', 'G'),25,cv::Size(nWidth,nHeight),true);
// 模拟算法执行流程
int nTrackSuc = 0;
for (int i = 0; i < 300; i++)
{
stInputPara.unFrmId++;
// 目标开始运动
factory.setBackGround(5000, 10);
moveX += spdx;
moveY += spdy;
size = 3 + i/20;
factory.addTarget((int)moveX, (int)moveY, (int)size, (int)size, 6500);
// 3个波门内目标
factory.addTarget((int)moveX - 20, (int)moveY, 3, 3, 6500);
factory.addTarget((int)moveX, (int)moveY + 20 , 3, 3, 6500);
factory.addTarget((int)moveX - 20 , (int)moveY +20, 3, 3, 6500);
// 下发点锁定指令
if (i == 30)
{
//ARIDLL_LockCommand(pTracker, (int)moveX, (int)moveY,0,0);
}
// 构建图像类型
GD_VIDEO_FRAME_S img = { 0 };
img.enPixelFormat = GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_GRAY_Y16;
img.u32Width = nWidth;
img.u32Height = nHeight;
img.u32Stride[0] = img.u32Width * 2;
img.u64VirAddr[0] = (UBYTE8*)factory.getImageData();
// 红外目标检测API调用
int targetNum = 0;
// 目标搜索仅在搜索状态执行,保持与经典对空算法一致,用于与上一版本耗时对比
// 新跟踪器中搜索在单独线程中不间断执行本demo中仅展示用法不做并行示范。
cv::TickMeter t1;
t1.start();
targetNum = ARIDLL_SearchFrameTargets(pTracker, img);
t1.stop();
double time_sr = t1.getTimeMilli();
t1.reset();
t1.start();
//cv::TickMeter t2;
// 运行算法主控逻辑API
ARIDLL_RunController(pTracker, img, stInputPara, &stOutput);
//t2.stop();
t1.stop();
double time_main = t1.getTimeMilli();
// // 绘制跟踪结果
// cv::Mat src = factory.getMatRGB();
// auto trackerOut = stOutput.stTrackers[0];
// cv::Rect outRect;
// outRect.width = MAX(15,int(trackerOut.nObjW));
// outRect.height= MAX(15,int(trackerOut.nObjW));
// outRect.x = trackerOut.nX-outRect.width/2.0;
// outRect.y = trackerOut.nX-outRect.height/2.0;
// cv::rectangle(src,outRect,cv::Scalar(0,0,255));
// char str[100];
// sprintf(str,"%d-%d,%d,%d,%f,%f",i,int(stOutput.stTrackers[0].nX - moveX),int(stOutput.stTrackers[0].nY - moveY),stOutput.stTrackers->nPipeLostCnt,
// time_sr,time_main);
// cv::putText(src,cv::String(str),cv::Point(outRect.x - 10,outRect.y),1,2,cv::Scalar(255,255,0));
printf("time: %f,%f\n",time_sr,time_main);
//writer<<src;
if (stOutput.nStatus == GLB_STATUS_TRACK && stOutput.nTrackObjCnts == 1)
{
if (abs(stOutput.stTrackers[0].nX - moveX) < 5 &&
abs(stOutput.stTrackers[0].nY - moveY) < 5)
{
nTrackSuc++;
}
}
}
//writer.release();
if (nTrackSuc > 270 * 0.99)
{
cout << "pass" << endl;
}
return 0;
}