// 单目标对地跟踪流程测试:将TLD从算法中剥离到外部,导致API调用形式调整 // 读取avi视频进行测试 #include "NeoArithStandardDll.h" #include "S3312.h" // 解析3312参数行数据需要包含 #include #include #include #include #include #include "opencv2/opencv.hpp" #define TEST_WITH_AID 0 // 是否使用AI Detect #define TEST_WITH_AIT 0 // 是否使用AI Tracker #define VOT_RECTANGLE #define VOT_IR #include "vot.h" #if TEST_WITH_AID #include "Arith_YOLO_Detect.h" #endif #if TEST_WITH_AIT #include "Arith_AITracker.h" #endif using std::cout; using std::endl; short SelectCX = 0; short SelectCY = 0; unsigned short setLockBoxW = 0; unsigned short setLockBoxH = 0; int m_ArithName = 3312; // 针对S3312可见光测试数据 // 算法输入部分 ARIDLL_INPUTPARA stInputPara = { 0 }; // 算法输出部分 ARIDLL_OUTPUT stOutput = { 0 }; // 构建图像输入 GD_VIDEO_FRAME_S img = { 0 }; // S3312参数行解析结构体 Commdef::TParaWriteBackToFpga g_S3312_Para = { 0 }; // S3312录像参数临时变量 // AI Detect算法结果 #if TEST_WITH_AID obj_res* g_pGLB_AIDetOutput = NULL; int g_GLB_AIDetNum = 0; #endif // AI Tracker算法结果 #if TEST_WITH_AIT API_AI_Tracker* g_GLB_AITracker = NULL; AIT_OUTPUT g_GLB_AITrackOutput = { 0 }; #endif #if TEST_WITH_AID static void AIDetRun(ArithHandle pTracker, GD_VIDEO_FRAME_S img, int frameID) { // 异步调用,考虑机器上传输延时,注意异步方式结果天然缓1帧。 Async_YOLO_DetectTarget(img.u64VirAddr[0], img.u32Width, img.u32Height, frameID); g_pGLB_AIDetOutput = Async_YOLO_GetTargetArray(g_GLB_AIDetNum); int targetNum = 0; TARGET_OBJECT* pArray = ARIDLL_SearchFrameTargets(pTracker, img, &targetNum); int mergeNum = ARIDLL_MergeAITargets(pTracker, pArray, targetNum, g_pGLB_AIDetOutput, g_GLB_AIDetNum); stInputPara.nInputTargetNum = mergeNum; memcpy(stInputPara.stInputTarget, pArray, sizeof(TARGET_OBJECT) * mergeNum); } #endif #if TEST_WITH_AIT static int AITrackerRun(GD_VIDEO_FRAME_S img, int frameID) { // 从传统算法输出中获取AI跟踪器的控制指令 CENTERRECT32F InitBox = stOutput.stAI_TkCmd.InitBox; CENTERRECT32F TargetBox = stOutput.stAI_TkCmd.TargetBox; if (InitBox.w > 0 && InitBox.h > 0) { g_GLB_AITracker->init(img, InitBox); return 0; } if (!stOutput.stAI_TkCmd.bTrack) { g_GLB_AITracker->stopTrack(); memset(&stInputPara.stAITrackerInfo, 0, sizeof(AIT_OUTPUT)); memset(&g_GLB_AITrackOutput, 0, sizeof(AIT_OUTPUT)); return 0; } g_GLB_AITracker->Track(img, TargetBox); // 获取跟踪结果 g_GLB_AITracker->getTrackResult_Async(&g_GLB_AITrackOutput); // 向传统算法传参 memcpy(&stInputPara.stAITrackerInfo, &g_GLB_AITrackOutput, sizeof(AIT_OUTPUT)); return 0; } #endif static void RunProcess(ArithHandle pTracker, GD_VIDEO_FRAME_S img) { #if TEST_WITH_AID // 运行AI识别算法 AIDetRun(pTracker, img, stInputPara.unFrmId); #endif #if TEST_WITH_AIT // 运行SiamRPN跟踪算法 AITrackerRun(img, stInputPara.unFrmId); #endif // 调用小面目标检测 int targetNum = ARIDLL_SearchFrameTargets(pTracker, img); // 运行算法主控逻辑API ARIDLL_RunController(pTracker, img, stInputPara, &stOutput); } int main() { VOT vot; cv::Rect initialization; int nParamLineCnt2 = 3; // 参数行数 int nImageWidth = 1920; // 图像宽度 int nImageHeight = 1080; // 图像高度 int nHeightWithParm = nImageHeight + nParamLineCnt2; // 叠加参数行后图像高度 int m_lImageDataSize = nImageWidth * nImageHeight; //图像大小,不包括参数行 int m_lArithReslutDataSize = nImageWidth * 2 * nParamLineCnt2; // 帧后参数占用空间(包括算法结果以及录像参数行) ///////////////////输入图像处理////////////////////////////// // 算法库的输入数据类型PIXELTYPE需要定位为unsigned short cv::Mat yuvWithparm, yuv, m_gray, dst_down; cv::Mat parm = cv::Mat(3, 1920, CV_8UC2); yuvWithparm = cv::Mat(1080 + 3, 1920, CV_8UC2); yuv = cv::Mat(1080, 1920, CV_8UC2); // 创建算法句柄 ArithHandle pTracker = STD_CreatEOArithHandle(); #if TEST_WITH_AID // AI检测初始化 //YOLO_Init(); Async_YOLO_Init(); #endif #if TEST_WITH_AIT // AI跟踪器初始化 g_GLB_AITracker = API_AI_Tracker::Create(AITrackerType::DaSaimRPN); g_GLB_AITracker->loadModel(); memset(&g_GLB_AITrackOutput, 0, sizeof(AIT_OUTPUT)); #endif // 初始化为凝视-对空模式 ARIDLL_EOArithInitWithMode(pTracker, 640, 512, GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_GRAY_Y8, GLB_SYS_MODE::GLB_SYS_STARE, GLB_SCEN_MODE::GLB_SCEN_SKY); std::string configFilePath = std::string(SOURCE_PATH) + "/NeoTracker/vot_test/ArithParaVL.json"; ARIDLL_ReadSetParamFile(pTracker, configFilePath.c_str()); stInputPara.unFreq = 50; stInputPara.stAirCraftInfo.stAtt.fYaw = 0; stInputPara.stAirCraftInfo.stAtt.fRoll = 0; stInputPara.stAirCraftInfo.stAtt.fPitch = 0; stInputPara.stServoInfo.fServoAz = 0; stInputPara.stServoInfo.fServoPt = 0; stInputPara.stCameraInfo.fPixelSize = 15; stInputPara.stCameraInfo.nFocus = 600; stInputPara.unFrmId = 0; // 模拟算法执行流程 while(!vot.end()) { string imagepath = vot.frame(); if (imagepath.empty()) { break; } ifstream inFile(imagepath, ios::in | ios::binary); inFile.read((char*)yuvWithparm.data, 2 * nHeightWithParm * nImageWidth);// 所有的单帧数据(包括图像和参数行) memcpy(yuv.data, yuvWithparm.data, m_lImageDataSize * 2); // 图像数据 cv::Mat image_part = yuv(cv::Rect(320, 28, 1280, 1024)); // 裁剪后的图 cv::cvtColor(image_part, m_gray, cv::COLOR_YUV2GRAY_UYVY); // 转GRAY cv::pyrDown(m_gray, dst_down, cv::Size(image_part.cols / 2, image_part.rows / 2)); // 2倍降采样 // 构建图像类型 img.enPixelFormat = GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_GRAY_Y8; img.u32Width = dst_down.cols; img.u32Height = dst_down.rows; img.u32Stride[0] = img.u32Width; img.u64VirAddr[0] = dst_down.data; if (3312 == m_ArithName) { memcpy(&g_S3312_Para, yuvWithparm.data + 1080 * 1920 * 2, m_lArithReslutDataSize); // 参数行数据 Commdef::TServoInfoOutput* tServoInfo = &g_S3312_Para.stTrackResultInfo.tServoAndPosInfo.tServoInfo; stInputPara.unFreq = 50; stInputPara.stAirCraftInfo.stAtt.fYaw = 0; stInputPara.stAirCraftInfo.stAtt.fRoll = 0; stInputPara.stAirCraftInfo.stAtt.fPitch = 0; stInputPara.stCameraInfo.unVideoType = GLB_VIDEO_TYPE::GLB_VIDEO_VL; stInputPara.stCameraInfo.fPixelSize = 10; stInputPara.stCameraInfo.nFocus = g_S3312_Para.stTrackResultInfo.usFocus; stInputPara.stCameraInfo.fAglReso = 2 * 0.0001f * g_S3312_Para.stTrackResultInfo.usResol; // 角分辨率 stInputPara.stServoInfo.fServoAz = tServoInfo->fServoPtAngle; stInputPara.stServoInfo.fServoPt = -tServoInfo->fServoAzAngle; stInputPara.stServoInfo.fServoAzSpeed = 0; stInputPara.stServoInfo.fServoPtSpeed = 0; } if (6 == stInputPara.unFrmId) { initialization << vot.region(); // 下发锁定 SelectCX = initialization.x + initialization.width / 2; SelectCY = initialization.y + initialization.height / 2; setLockBoxW = initialization.width; setLockBoxH = initialization.height; ARIDLL_OBJINFO obj = { 0 }; obj = ARIDLL_LockTarget(pTracker, img, SelectCX, SelectCY, setLockBoxW, setLockBoxH); } stInputPara.unFrmId++; RunProcess(pTracker, img); auto trackerOut = stOutput.stTrackers[0]; cv::Rect outRect; outRect.width = (int)trackerOut.nObjW; outRect.height= (int)trackerOut.nObjH; outRect.x = (int)trackerOut.nX - outRect.width / 2; outRect.y = (int)trackerOut.nY - outRect.height / 2; vot.report(outRect, trackerOut.fConf); } return 0; }