// 单目标对地跟踪流程测试:将TLD从算法中剥离到外部,导致API调用形式调整 // 读取avi视频进行测试 #include "NeoArithStandardDll.h" #include #include #include #include #include #include "opencv2/opencv.hpp" #define TEST_WITH_AID 0 // 是否使用AI Detect #define TEST_WITH_AIT 0 // 是否使用AI Tracker,如果设置为1,最外部的CMakeLists.txt 需要设置set(BUILD_AI_TRACK TRUE) #define VOT_RECTANGLE #include "vot.h" #if TEST_WITH_AID #include "Arith_YOLO_Detect.h" #endif #if TEST_WITH_AIT #include "Arith_AITracker.h" #endif using std::cout; using std::endl; short SelectCX = 0; short SelectCY = 0; unsigned short setLockBoxW = 0; unsigned short setLockBoxH = 0; // 算法输入部分 ARIDLL_INPUTPARA stInputPara = { 0 }; // 算法输出部分 ARIDLL_OUTPUT stOutput = { 0 }; // AI Detect算法结果 #if TEST_WITH_AID obj_res* g_pGLB_AIDetOutput = NULL; int g_GLB_AIDetNum = 0; #endif // AI Tracker算法结果 #if TEST_WITH_AIT API_AI_Tracker* g_GLB_AITracker = NULL; AIT_OUTPUT g_GLB_AITrackOutput = { 0 }; #endif #if TEST_WITH_AID static void AIDetRun(ArithHandle pTracker, GD_VIDEO_FRAME_S img, int frameID) { // 异步调用,考虑机器上传输延时,注意异步方式结果天然缓1帧。 Async_YOLO_DetectTarget(img.u64VirAddr[0], img.u32Width, img.u32Height, frameID); g_pGLB_AIDetOutput = Async_YOLO_GetTargetArray(g_GLB_AIDetNum); int targetNum = 0; TARGET_OBJECT* pArray = ARIDLL_SearchFrameTargets(pTracker, img, &targetNum); int mergeNum = ARIDLL_MergeAITargets(pTracker, pArray, targetNum, g_pGLB_AIDetOutput, g_GLB_AIDetNum); stInputPara.nInputTargetNum = mergeNum; memcpy(stInputPara.stInputTarget, pArray, sizeof(TARGET_OBJECT) * mergeNum); } #endif #if TEST_WITH_AIT static int AITrackerRun(GD_VIDEO_FRAME_S img, int frameID) { // 从传统算法输出中获取AI跟踪器的控制指令 CENTERRECT32F InitBox = stOutput.stAI_TkCmd.InitBox; CENTERRECT32F TargetBox = stOutput.stAI_TkCmd.TargetBox; if (InitBox.w > 0 && InitBox.h > 0) { g_GLB_AITracker->init(img, InitBox); return 0; } if (!stOutput.stAI_TkCmd.bTrack) { g_GLB_AITracker->stopTrack(); memset(&stInputPara.stAITrackerInfo, 0, sizeof(AIT_OUTPUT)); memset(&g_GLB_AITrackOutput, 0, sizeof(AIT_OUTPUT)); return 0; } g_GLB_AITracker->Track(img, TargetBox); // 获取跟踪结果 g_GLB_AITracker->getTrackResult_Async(&g_GLB_AITrackOutput); // 向传统算法传参 memcpy(&stInputPara.stAITrackerInfo, &g_GLB_AITrackOutput, sizeof(AIT_OUTPUT)); return 0; } #endif static void RunProcess(ArithHandle pTracker, GD_VIDEO_FRAME_S img) { #if TEST_WITH_AID // 运行AI识别算法 AIDetRun(pTracker, img, stInputPara.unFrmId); #endif #if TEST_WITH_AIT // 运行SiamRPN跟踪算法 AITrackerRun(img, stInputPara.unFrmId); #endif // 调用TLD流程 //ARIDLL_RunTLDTracker(pTracker, img); // 运行算法主控逻辑API ARIDLL_RunController(pTracker, img, stInputPara, &stOutput); } int main() { VOT vot; cv::Rect initialization; initialization << vot.region(); cv::Mat frame = cv::imread(vot.frame()); int nWidth = frame.cols; int nHeight = frame.rows; // 创建算法句柄 ArithHandle pTracker = STD_CreatEOArithHandle(); #if TEST_WITH_AID // AI检测初始化 //YOLO_Init(); Async_YOLO_Init(); #endif #if TEST_WITH_AIT // AI跟踪器初始化 g_GLB_AITracker = API_AI_Tracker::Create(AITrackerType::DaSaimRPN); g_GLB_AITracker->loadModel(); memset(&g_GLB_AITrackOutput, 0, sizeof(AIT_OUTPUT)); #endif // 初始化为凝视-对地模式 ARIDLL_EOArithInitWithMode(pTracker,nWidth,nHeight,GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_RGB_PACKED, GLB_SYS_MODE::GLB_SYS_STARE,GLB_SCEN_MODE::GLB_SCEN_GROUND); // 构建图像类型 GD_VIDEO_FRAME_S img = { 0 }; img.enPixelFormat = GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_RGB_PACKED; img.u32Width = nWidth; img.u32Height = nHeight; img.u32Stride[0] = img.u32Width * 3; img.u64VirAddr[0] = frame.data; stInputPara.unFreq = 30; stInputPara.stAirCraftInfo.stAtt.fYaw = 0; stInputPara.stAirCraftInfo.stAtt.fRoll = 0; stInputPara.stAirCraftInfo.stAtt.fPitch = 0; stInputPara.stServoInfo.fServoAz = 0; stInputPara.stServoInfo.fServoPt = 0; stInputPara.stCameraInfo.fPixelSize = 15; stInputPara.stCameraInfo.nFocus = 600; stInputPara.unFrmId = 0; // 调用一次进行算法内部的初始化 RunProcess(pTracker, img); // 下发锁定 SelectCX = initialization.x + initialization.width / 2; SelectCY = initialization.y + initialization.height / 2; setLockBoxW = initialization.width; setLockBoxH = initialization.height; ARIDLL_OBJINFO obj = { 0 }; obj = ARIDLL_LockTarget(pTracker, img, SelectCX, SelectCY, setLockBoxW, setLockBoxH); #if TEST_WITH_AIT if (obj.nObjW > 0) { // 使用EOTracker的锁定决策初始化AI跟踪器 CENTERRECT32F initBox = { obj.nX,obj.nY, obj.nObjW, obj.nObjH }; g_GLB_AITracker->init(img, initBox); // 获取跟踪结果 g_GLB_AITracker->getTrackResult_Async(&g_GLB_AITrackOutput); } #endif // 调用一次跟踪流程,完成在锁定帧的跟踪运行 RunProcess(pTracker, img); // 模拟算法执行流程 while(!vot.end()) { stInputPara.unFrmId++; string imagepath = vot.frame(); if (imagepath.empty()) { break; } frame = cv::imread(imagepath); // 构建图像类型 img.enPixelFormat = GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_RGB_PACKED; img.u32Width = nWidth; img.u32Height = nHeight; img.u32Stride[0] = img.u32Width * 3; img.u64VirAddr[0] = frame.data; RunProcess(pTracker, img); auto trackerOut = stOutput.stTrackers[0]; cv::Rect outRect; outRect.width = (int)trackerOut.nObjW; outRect.height= (int)trackerOut.nObjH; outRect.x = (int)trackerOut.nX - outRect.width / 2; outRect.y = (int)trackerOut.nY - outRect.height / 2; vot.report(outRect, trackerOut.fConf); } return 0; }