You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

230 lines
6.2 KiB

// 单目标对地跟踪流程测试:将TLD从算法中剥离到外部导致API调用形式调整
// 读取avi视频进行测试
#include "NeoArithStandardDll.h"
#include <iostream>
#include <memory>
#include <string.h>
#include <algorithm>
#include <thread>
#include "opencv2/opencv.hpp"
#define TEST_WITH_AID 0 // 是否使用AI Detect
#define TEST_WITH_AIT 0 // 是否使用AI Tracker,如果设置为1最外部的CMakeLists.txt 需要设置set(BUILD_AI_TRACK TRUE)
#define VOT_RECTANGLE
#include "vot.h"
#if TEST_WITH_AID
#include "Arith_YOLO_Detect.h"
#endif
#if TEST_WITH_AIT
#include "Arith_AITracker.h"
#endif
using std::cout;
using std::endl;
short SelectCX = 0;
short SelectCY = 0;
unsigned short setLockBoxW = 0;
unsigned short setLockBoxH = 0;
// 算法输入部分
ARIDLL_INPUTPARA stInputPara = { 0 };
// 算法输出部分
ARIDLL_OUTPUT stOutput = { 0 };
// AI Detect算法结果
#if TEST_WITH_AID
obj_res* g_pGLB_AIDetOutput = NULL;
int g_GLB_AIDetNum = 0;
#endif
// AI Tracker算法结果
#if TEST_WITH_AIT
API_AI_Tracker* g_GLB_AITracker = NULL;
AIT_OUTPUT g_GLB_AITrackOutput = { 0 };
#endif
#if TEST_WITH_AID
static void AIDetRun(ArithHandle pTracker, GD_VIDEO_FRAME_S img, int frameID)
{
// 异步调用考虑机器上传输延时注意异步方式结果天然缓1帧。
Async_YOLO_DetectTarget(img.u64VirAddr[0], img.u32Width, img.u32Height, frameID);
g_pGLB_AIDetOutput = Async_YOLO_GetTargetArray(g_GLB_AIDetNum);
int targetNum = 0;
TARGET_OBJECT* pArray = ARIDLL_SearchFrameTargets(pTracker, img, &targetNum);
int mergeNum = ARIDLL_MergeAITargets(pTracker, pArray, targetNum, g_pGLB_AIDetOutput, g_GLB_AIDetNum);
stInputPara.nInputTargetNum = mergeNum;
memcpy(stInputPara.stInputTarget, pArray, sizeof(TARGET_OBJECT) * mergeNum);
}
#endif
#if TEST_WITH_AIT
static int AITrackerRun(GD_VIDEO_FRAME_S img, int frameID)
{
// 从传统算法输出中获取AI跟踪器的控制指令
CENTERRECT32F InitBox = stOutput.stAI_TkCmd.InitBox;
CENTERRECT32F TargetBox = stOutput.stAI_TkCmd.TargetBox;
if (InitBox.w > 0 && InitBox.h > 0)
{
g_GLB_AITracker->init(img, InitBox);
return 0;
}
if (!stOutput.stAI_TkCmd.bTrack)
{
g_GLB_AITracker->stopTrack();
memset(&stInputPara.stAITrackerInfo, 0, sizeof(AIT_OUTPUT));
memset(&g_GLB_AITrackOutput, 0, sizeof(AIT_OUTPUT));
return 0;
}
g_GLB_AITracker->Track(img, TargetBox);
// 获取跟踪结果
g_GLB_AITracker->getTrackResult_Async(&g_GLB_AITrackOutput);
// 向传统算法传参
memcpy(&stInputPara.stAITrackerInfo, &g_GLB_AITrackOutput, sizeof(AIT_OUTPUT));
return 0;
}
#endif
static void RunProcess(ArithHandle pTracker, GD_VIDEO_FRAME_S img)
{
#if TEST_WITH_AID
// 运行AI识别算法
AIDetRun(pTracker, img, stInputPara.unFrmId);
#endif
#if TEST_WITH_AIT
// 运行SiamRPN跟踪算法
AITrackerRun(img, stInputPara.unFrmId);
#endif
// 调用TLD流程
//ARIDLL_RunTLDTracker(pTracker, img);
// 运行算法主控逻辑API
ARIDLL_RunController(pTracker, img, stInputPara, &stOutput);
}
int main()
{
VOT vot;
cv::Rect initialization;
initialization << vot.region();
cv::Mat frame = cv::imread(vot.frame());
int nWidth = frame.cols;
int nHeight = frame.rows;
// 创建算法句柄
ArithHandle pTracker = STD_CreatEOArithHandle();
#if TEST_WITH_AID
// AI检测初始化
//YOLO_Init();
Async_YOLO_Init();
#endif
#if TEST_WITH_AIT
// AI跟踪器初始化
g_GLB_AITracker = API_AI_Tracker::Create(AITrackerType::DaSaimRPN);
g_GLB_AITracker->loadModel();
memset(&g_GLB_AITrackOutput, 0, sizeof(AIT_OUTPUT));
#endif
// 初始化为凝视-对地模式
ARIDLL_EOArithInitWithMode(pTracker,nWidth,nHeight,GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_RGB_PACKED,
GLB_SYS_MODE::GLB_SYS_STARE,GLB_SCEN_MODE::GLB_SCEN_GROUND);
// 构建图像类型
GD_VIDEO_FRAME_S img = { 0 };
img.enPixelFormat = GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_RGB_PACKED;
img.u32Width = nWidth;
img.u32Height = nHeight;
img.u32Stride[0] = img.u32Width * 3;
img.u64VirAddr[0] = frame.data;
stInputPara.unFreq = 30;
stInputPara.stAirCraftInfo.stAtt.fYaw = 0;
stInputPara.stAirCraftInfo.stAtt.fRoll = 0;
stInputPara.stAirCraftInfo.stAtt.fPitch = 0;
stInputPara.stServoInfo.fServoAz = 0;
stInputPara.stServoInfo.fServoPt = 0;
stInputPara.stCameraInfo.fPixelSize = 15;
stInputPara.stCameraInfo.nFocus = 600;
stInputPara.unFrmId = 0;
// 调用一次进行算法内部的初始化
RunProcess(pTracker, img);
// 下发锁定
SelectCX = initialization.x + initialization.width / 2;
SelectCY = initialization.y + initialization.height / 2;
setLockBoxW = initialization.width;
setLockBoxH = initialization.height;
ARIDLL_OBJINFO obj = { 0 };
obj = ARIDLL_LockTarget(pTracker, img, SelectCX, SelectCY, setLockBoxW, setLockBoxH);
#if TEST_WITH_AIT
if (obj.nObjW > 0)
{
// 使用EOTracker的锁定决策初始化AI跟踪器
CENTERRECT32F initBox = { obj.nX,obj.nY, obj.nObjW, obj.nObjH };
g_GLB_AITracker->init(img, initBox);
// 获取跟踪结果
g_GLB_AITracker->getTrackResult_Async(&g_GLB_AITrackOutput);
}
#endif
// 调用一次跟踪流程,完成在锁定帧的跟踪运行
RunProcess(pTracker, img);
// 模拟算法执行流程
while(!vot.end())
{
stInputPara.unFrmId++;
string imagepath = vot.frame();
if (imagepath.empty())
{
break;
}
frame = cv::imread(imagepath);
// 构建图像类型
img.enPixelFormat = GD_PIXEL_FORMAT_E::GD_PIXEL_FORMAT_RGB_PACKED;
img.u32Width = nWidth;
img.u32Height = nHeight;
img.u32Stride[0] = img.u32Width * 3;
img.u64VirAddr[0] = frame.data;
RunProcess(pTracker, img);
auto trackerOut = stOutput.stTrackers[0];
cv::Rect outRect;
outRect.width = (int)trackerOut.nObjW;
outRect.height= (int)trackerOut.nObjH;
outRect.x = (int)trackerOut.nX - outRect.width / 2;
outRect.y = (int)trackerOut.nY - outRect.height / 2;
vot.report(outRect, trackerOut.fConf);
}
return 0;
}