You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

96 lines
6.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

* [简介]()
* [阅读指南](read_guide.md)
* [1. 深度学习简介](chapter01_DL-intro/deep-learning-intro.md)
* 2\. 预备知识
* [2.1 环境配置](chapter02_prerequisite/2.1_install.md)
* [2.2 数据操作](chapter02_prerequisite/2.2_tensor.md)
* [2.3 自动求梯度](chapter02_prerequisite/2.3_autograd.md)
* 3\. 深度学习基础
* [3.1 线性回归](chapter03_DL-basics/3.1_linear-regression.md)
* [3.2 线性回归的从零开始实现](chapter03_DL-basics/3.2_linear-regression-scratch.md)
* [3.3 线性回归的简洁实现](chapter03_DL-basics/3.3_linear-regression-pytorch.md)
* [3.4 softmax回归](chapter03_DL-basics/3.4_softmax-regression.md)
* [3.5 图像分类数据集Fashion-MNIST](chapter03_DL-basics/3.5_fashion-mnist.md)
* [3.6 softmax回归的从零开始实现](chapter03_DL-basics/3.6_softmax-regression-scratch.md)
* [3.7 softmax回归的简洁实现](chapter03_DL-basics/3.7_softmax-regression-pytorch.md)
* [3.8 多层感知机](chapter03_DL-basics/3.8_mlp.md)
* [3.9 多层感知机的从零开始实现](chapter03_DL-basics/3.9_mlp-scratch.md)
* [3.10 多层感知机的简洁实现](chapter03_DL-basics/3.10_mlp-pytorch.md)
* [3.11 模型选择、欠拟合和过拟合](chapter03_DL-basics/3.11_underfit-overfit.md)
* [3.12 权重衰减](chapter03_DL-basics/3.12_weight-decay.md)
* [3.13 丢弃法](chapter03_DL-basics/3.13_dropout.md)
* [3.14 正向传播、反向传播和计算图](chapter03_DL-basics/3.14_backprop.md)
* [3.15 数值稳定性和模型初始化](chapter03_DL-basics/3.15_numerical-stability-and-init.md)
* [3.16 实战Kaggle比赛房价预测](chapter03_DL-basics/3.16_kaggle-house-price.md)
* 4\. 深度学习计算
* [4.1 模型构造](chapter04_DL_computation/4.1_model-construction.md)
* [4.2 模型参数的访问、初始化和共享](chapter04_DL_computation/4.2_parameters.md)
* [4.3 模型参数的延后初始化](chapter04_DL_computation/4.3_deferred-init.md)
* [4.4 自定义层](chapter04_DL_computation/4.4_custom-layer.md)
* [4.5 读取和存储](chapter04_DL_computation/4.5_read-write.md)
* [4.6 GPU计算](chapter04_DL_computation/4.6_use-gpu.md)
* 5\. 卷积神经网络
* [5.1 二维卷积层](chapter05_CNN/5.1_conv-layer.md)
* [5.2 填充和步幅](chapter05_CNN/5.2_padding-and-strides.md)
* [5.3 多输入通道和多输出通道](chapter05_CNN/5.3_channels.md)
* [5.4 池化层](chapter05_CNN/5.4_pooling.md)
* [5.5 卷积神经网络LeNet](chapter05_CNN/5.5_lenet.md)
* [5.6 深度卷积神经网络AlexNet](chapter05_CNN/5.6_alexnet.md)
* [5.7 使用重复元素的网络VGG](chapter05_CNN/5.7_vgg.md)
* [5.8 网络中的网络NiN](chapter05_CNN/5.8_nin.md)
* [5.9 含并行连结的网络GoogLeNet](chapter05_CNN/5.9_googlenet.md)
* [5.10 批量归一化](chapter05_CNN/5.10_batch-norm.md)
* [5.11 残差网络ResNet](chapter05_CNN/5.11_resnet.md)
* [5.12 稠密连接网络DenseNet](chapter05_CNN/5.12_densenet.md)
* 6\. 循环神经网络
* [6.1 语言模型](chapter06_RNN/6.1_lang-model.md)
* [6.2 循环神经网络](chapter06_RNN/6.2_rnn.md)
* [6.3 语言模型数据集(周杰伦专辑歌词)](chapter06_RNN/6.3_lang-model-dataset.md)
* [6.4 循环神经网络的从零开始实现](chapter06_RNN/6.4_rnn-scratch.md)
* [6.5 循环神经网络的简洁实现](chapter06_RNN/6.5_rnn-pytorch.md)
* [6.6 通过时间反向传播](chapter06_RNN/6.6_bptt.md)
* [6.7 门控循环单元GRU](chapter06_RNN/6.7_gru.md)
* [6.8 长短期记忆LSTM](chapter06_RNN/6.8_lstm.md)
* [6.9 深度循环神经网络](chapter06_RNN/6.9_deep-rnn.md)
* [6.10 双向循环神经网络](chapter06_RNN/6.10_bi-rnn.md)
* 7\. 优化算法
* [7.1 优化与深度学习](chapter07_optimization/7.1_optimization-intro.md)
* [7.2 梯度下降和随机梯度下降](chapter07_optimization/7.2_gd-sgd.md)
* [7.3 小批量随机梯度下降](chapter07_optimization/7.3_minibatch-sgd.md)
* [7.4 动量法](chapter07_optimization/7.4_momentum.md)
* [7.5 AdaGrad算法](chapter07_optimization/7.5_adagrad.md)
* [7.6 RMSProp算法](chapter07_optimization/7.6_rmsprop.md)
* [7.7 AdaDelta算法](chapter07_optimization/7.7_adadelta.md)
* [7.8 Adam算法](chapter07_optimization/7.8_adam.md)
* 8\. 计算性能
* [8.1 命令式和符号式混合编程](chapter08_computational-performance/8.1_hybridize.md)
* [8.2 异步计算](chapter08_computational-performance/8.2_async-computation.md)
* [8.3 自动并行计算](chapter08_computational-performance/8.3_auto-parallelism.md)
* [8.4 多GPU计算](chapter08_computational-performance/8.4_multiple-gpus.md)
* 9\. 计算机视觉
* [9.1 图像增广](chapter09_computer-vision/9.1_image-augmentation.md)
* [9.2 微调](chapter09_computer-vision/9.2_fine-tuning.md)
* [9.3 目标检测和边界框](chapter09_computer-vision/9.3_bounding-box.md)
* [9.4 锚框](chapter09_computer-vision/9.4_anchor.md)
* [9.5 多尺度目标检测](chapter09_computer-vision/9.5_multiscale-object-detection.md)
* [9.6 目标检测数据集(皮卡丘)](chapter09_computer-vision/9.6_object-detection-dataset.md)
* 9.7 单发多框检测SSD
* [9.8 区域卷积神经网络R-CNN系列](chapter09_computer-vision/9.8_rcnn.md)
* [9.9 语义分割和数据集](chapter09_computer-vision/9.9_semantic-segmentation-and-dataset.md)
* 9.10 全卷积网络FCN
* [9.11 样式迁移](chapter09_computer-vision/9.11_neural-style.md)
* 9.12 实战Kaggle比赛图像分类CIFAR-10
* 9.13 实战Kaggle比赛狗的品种识别ImageNet Dogs
* 10\. 自然语言处理
* [10.1 词嵌入word2vec](chapter10_natural-language-processing/10.1_word2vec.md)
* [10.2 近似训练](chapter10_natural-language-processing/10.2_approx-training.md)
* [10.3 word2vec的实现](chapter10_natural-language-processing/10.3_word2vec-pytorch.md)
* [10.4 子词嵌入fastText](chapter10_natural-language-processing/10.4_fasttext.md)
* [10.5 全局向量的词嵌入GloVe](chapter10_natural-language-processing/10.5_glove.md)
* [10.6 求近义词和类比词](chapter10_natural-language-processing/10.6_similarity-analogy.md)
* [10.7 文本情感分类:使用循环神经网络](chapter10_natural-language-processing/10.7_sentiment-analysis-rnn.md)
* [10.8 文本情感分类使用卷积神经网络textCNN](chapter10_natural-language-processing/10.8_sentiment-analysis-cnn.md)
* [10.9 编码器—解码器seq2seq](chapter10_natural-language-processing/10.9_seq2seq.md)
* [10.10 束搜索](chapter10_natural-language-processing/10.10_beam-search.md)
* [10.11 注意力机制](chapter10_natural-language-processing/10.11_attention.md)
* [10.12 机器翻译](chapter10_natural-language-processing/10.12_machine-translation.md)