You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

205 lines
5.3 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 9.6.0 准备皮卡丘数据集"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"from tqdm import tqdm\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from mxnet.gluon import utils as gutils # pip install mxnet\n",
"from mxnet import image\n",
"\n",
"data_dir = '../../data/pikachu'\n",
"os.makedirs(data_dir, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. 下载原始数据集\n",
"见http://zh.d2l.ai/chapter_computer-vision/object-detection-dataset.html"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def _download_pikachu(data_dir):\n",
" root_url = ('https://apache-mxnet.s3-accelerate.amazonaws.com/'\n",
" 'gluon/dataset/pikachu/')\n",
" dataset = {'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8',\n",
" 'train.idx': 'dcf7318b2602c06428b9988470c731621716c393',\n",
" 'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520'}\n",
" for k, v in dataset.items():\n",
" gutils.download(root_url + k, os.path.join(data_dir, k), sha1_hash=v)\n",
"\n",
"if not os.path.exists(os.path.join(data_dir, \"train.rec\")):\n",
" print(\"下载原始数据集到%s...\" % data_dir)\n",
" _download_pikachu(data_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. MXNet数据迭代器"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def load_data_pikachu(batch_size, edge_size=256): # edge_size输出图像的宽和高\n",
" train_iter = image.ImageDetIter(\n",
" path_imgrec=os.path.join(data_dir, 'train.rec'),\n",
" path_imgidx=os.path.join(data_dir, 'train.idx'),\n",
" batch_size=batch_size,\n",
" data_shape=(3, edge_size, edge_size), # 输出图像的形状\n",
"# shuffle=False, # 以随机顺序读取数据集\n",
"# rand_crop=1, # 随机裁剪的概率为1\n",
" min_object_covered=0.95, max_attempts=200)\n",
" val_iter = image.ImageDetIter(\n",
" path_imgrec=os.path.join(data_dir, 'val.rec'), batch_size=batch_size,\n",
" data_shape=(3, edge_size, edge_size), shuffle=False)\n",
" return train_iter, val_iter"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((3, 256, 256), (1, 5))"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"batch_size, edge_size = 1, 256\n",
"train_iter, val_iter = load_data_pikachu(batch_size, edge_size)\n",
"batch = train_iter.next()\n",
"batch.data[0][0].shape, batch.label[0][0].shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. 转换成PNG图片并保存"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def process(data_iter, save_dir):\n",
" \"\"\"batch size == 1\"\"\"\n",
" data_iter.reset() # 从头开始\n",
" all_label = dict()\n",
" id = 1\n",
" os.makedirs(os.path.join(save_dir, 'images'), exist_ok=True)\n",
" for sample in tqdm(data_iter):\n",
" x = sample.data[0][0].asnumpy().transpose((1,2,0))\n",
" plt.imsave(os.path.join(save_dir, 'images', str(id) + '.png'), x / 255.0)\n",
"\n",
" y = sample.label[0][0][0].asnumpy()\n",
"\n",
" label = {}\n",
" label[\"class\"] = int(y[0])\n",
" label[\"loc\"] = y[1:].tolist()\n",
"\n",
" all_label[str(id) + '.png'] = label.copy()\n",
"\n",
" id += 1\n",
"\n",
" with open(os.path.join(save_dir, 'label.json'), 'w') as f:\n",
" json.dump(all_label, f, indent=True)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"900it [00:40, 22.03it/s]\n"
]
}
],
"source": [
"process(data_iter = train_iter, save_dir = os.path.join(data_dir, \"train\"))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100it [00:04, 22.86it/s]\n"
]
}
],
"source": [
"process(data_iter = val_iter, save_dir = os.path.join(data_dir, \"val\"))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}