{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 9.11 样式迁移" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cuda 1.1.0\n" ] } ], "source": [ "%matplotlib inline\n", "import time\n", "import torch\n", "import torch.nn.functional as F\n", "import torchvision\n", "import numpy as np\n", "from PIL import Image\n", "\n", "import sys\n", "sys.path.append(\"..\") \n", "import d2lzh_pytorch as d2l\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 均已测试\n", "\n", "print(device, torch.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9.11.2 读取内容图像和样式图像" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d2l.set_figsize()\n", "content_img = Image.open('../../data/rainier.jpg')\n", "d2l.plt.imshow(content_img);" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d2l.set_figsize()\n", "style_img = Image.open('../../data/autumn_oak.jpg')\n", "d2l.plt.imshow(style_img);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9.11.3. 预处理和后处理图像" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "rgb_mean = np.array([0.485, 0.456, 0.406])\n", "rgb_std = np.array([0.229, 0.224, 0.225])\n", "\n", "def preprocess(PIL_img, image_shape):\n", " process = torchvision.transforms.Compose([\n", " torchvision.transforms.Resize(image_shape),\n", " torchvision.transforms.ToTensor(),\n", " torchvision.transforms.Normalize(mean=rgb_mean, std=rgb_std)])\n", "\n", " return process(PIL_img).unsqueeze(dim = 0) # (batch_size, 3, H, W)\n", "\n", "def postprocess(img_tensor):\n", " inv_normalize = torchvision.transforms.Normalize(\n", " mean= -rgb_mean / rgb_std,\n", " std= 1/rgb_std)\n", " to_PIL_image = torchvision.transforms.ToPILImage()\n", " return to_PIL_image(inv_normalize(img_tensor[0].cpu()).clamp(0, 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9.11.4 抽取特征" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/data1/tangss/PyTorch_pretrainedmodels\r\n" ] } ], "source": [ "!echo $TORCH_HOME # 将会把预训练好的模型下载到此处(没有输出的话默认是.cache/torch)\n", "pretrained_net = torchvision.models.vgg19(pretrained=True, progress=True)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "VGG(\n", " (features): Sequential(\n", " (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (1): ReLU(inplace)\n", " (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (3): ReLU(inplace)\n", " (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (6): ReLU(inplace)\n", " (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (8): ReLU(inplace)\n", " (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (11): ReLU(inplace)\n", " (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (13): ReLU(inplace)\n", " (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (15): ReLU(inplace)\n", " (16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (17): ReLU(inplace)\n", " (18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (19): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (20): ReLU(inplace)\n", " (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (22): ReLU(inplace)\n", " (23): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (24): ReLU(inplace)\n", " (25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (26): ReLU(inplace)\n", " (27): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (29): ReLU(inplace)\n", " (30): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (31): ReLU(inplace)\n", " (32): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (33): ReLU(inplace)\n", " (34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (35): ReLU(inplace)\n", " (36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " )\n", " (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))\n", " (classifier): Sequential(\n", " (0): Linear(in_features=25088, out_features=4096, bias=True)\n", " (1): ReLU(inplace)\n", " (2): Dropout(p=0.5)\n", " (3): Linear(in_features=4096, out_features=4096, bias=True)\n", " (4): ReLU(inplace)\n", " (5): Dropout(p=0.5)\n", " (6): Linear(in_features=4096, out_features=1000, bias=True)\n", " )\n", ")" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pretrained_net" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "style_layers, content_layers = [0, 5, 10, 19, 28], [25]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "net_list = []\n", "for i in range(max(content_layers + style_layers) + 1):\n", " net_list.append(pretrained_net.features[i])\n", "net = torch.nn.Sequential(*net_list)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def extract_features(X, content_layers, style_layers):\n", " contents = []\n", " styles = []\n", " for i in range(len(net)):\n", " X = net[i](X)\n", " if i in style_layers:\n", " styles.append(X)\n", " if i in content_layers:\n", " contents.append(X)\n", " return contents, styles" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_contents(image_shape, device):\n", " content_X = preprocess(content_img, image_shape).to(device)\n", " contents_Y, _ = extract_features(content_X, content_layers, style_layers)\n", " return content_X, contents_Y\n", "\n", "def get_styles(image_shape, device):\n", " style_X = preprocess(style_img, image_shape).to(device)\n", " _, styles_Y = extract_features(style_X, content_layers, style_layers)\n", " return style_X, styles_Y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9.11.5 定义损失函数\n", "### 9.11.5.1 内容损失" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def content_loss(Y_hat, Y):\n", " return F.mse_loss(Y_hat, Y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9.11.5.2 样式损失" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def gram(X):\n", " num_channels, n = X.shape[1], X.shape[2] * X.shape[3]\n", " X = X.view(num_channels, n)\n", " return torch.matmul(X, X.t()) / (num_channels * n)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def style_loss(Y_hat, gram_Y):\n", " return F.mse_loss(gram(Y_hat), gram_Y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9.11.5.3 总变差损失" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def tv_loss(Y_hat):\n", " return 0.5 * (F.l1_loss(Y_hat[:, :, 1:, :], Y_hat[:, :, :-1, :]) + \n", " F.l1_loss(Y_hat[:, :, :, 1:], Y_hat[:, :, :, :-1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 9.11.5.4 损失函数" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "content_weight, style_weight, tv_weight = 1, 1e3, 10\n", "\n", "def compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram):\n", " # 分别计算内容损失、样式损失和总变差损失\n", " contents_l = [content_loss(Y_hat, Y) * content_weight for Y_hat, Y in zip(\n", " contents_Y_hat, contents_Y)]\n", " styles_l = [style_loss(Y_hat, Y) * style_weight for Y_hat, Y in zip(\n", " styles_Y_hat, styles_Y_gram)]\n", " tv_l = tv_loss(X) * tv_weight\n", " # 对所有损失求和\n", " l = sum(styles_l) + sum(contents_l) + tv_l\n", " return contents_l, styles_l, tv_l, l" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9.11.6 创建和初始化合成图像" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class GeneratedImage(torch.nn.Module):\n", " def __init__(self, img_shape):\n", " super(GeneratedImage, self).__init__()\n", " self.weight = torch.nn.Parameter(torch.rand(*img_shape))\n", "\n", " def forward(self):\n", " return self.weight" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_inits(X, device, lr, styles_Y):\n", " gen_img = GeneratedImage(X.shape).to(device)\n", " gen_img.weight.data = X.data\n", " optimizer = torch.optim.Adam(gen_img.parameters(), lr=lr)\n", " styles_Y_gram = [gram(Y) for Y in styles_Y]\n", " return gen_img(), styles_Y_gram, optimizer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9.11.7 训练" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def train(X, contents_Y, styles_Y, device, lr, max_epochs, lr_decay_epoch):\n", " print(\"training on \", device)\n", " X, styles_Y_gram, optimizer = get_inits(X, device, lr, styles_Y)\n", " scheduler = torch.optim.lr_scheduler.StepLR(optimizer, lr_decay_epoch, gamma=0.1)\n", " for i in range(max_epochs):\n", " start = time.time()\n", " \n", " contents_Y_hat, styles_Y_hat = extract_features(\n", " X, content_layers, style_layers)\n", " contents_l, styles_l, tv_l, l = compute_loss(\n", " X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram)\n", " \n", " optimizer.zero_grad()\n", " l.backward(retain_graph = True)\n", " optimizer.step()\n", " scheduler.step()\n", " \n", " if i % 50 == 0 and i != 0:\n", " print('epoch %3d, content loss %.2f, style loss %.2f, '\n", " 'TV loss %.2f, %.2f sec'\n", " % (i, sum(contents_l).item(), sum(styles_l).item(), tv_l.item(),\n", " time.time() - start))\n", " return X.detach()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training on cuda\n", "epoch 50, content loss 0.24, style loss 1.11, TV loss 1.33, 0.07 sec\n", "epoch 100, content loss 0.24, style loss 0.81, TV loss 1.20, 0.07 sec\n", "epoch 150, content loss 0.24, style loss 0.72, TV loss 1.12, 0.07 sec\n", "epoch 200, content loss 0.24, style loss 0.68, TV loss 1.06, 0.07 sec\n", "epoch 250, content loss 0.23, style loss 0.68, TV loss 1.05, 0.07 sec\n", "epoch 300, content loss 0.23, style loss 0.67, TV loss 1.04, 0.07 sec\n", "epoch 350, content loss 0.23, style loss 0.67, TV loss 1.04, 0.07 sec\n", "epoch 400, content loss 0.23, style loss 0.67, TV loss 1.03, 0.07 sec\n", "epoch 450, content loss 0.23, style loss 0.67, TV loss 1.03, 0.07 sec\n" ] } ], "source": [ "image_shape = (150, 225)\n", "net = net.to(device)\n", "content_X, contents_Y = get_contents(image_shape, device)\n", "style_X, styles_Y = get_styles(image_shape, device)\n", "output = train(content_X, contents_Y, styles_Y, device, 0.01, 500, 200)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d2l.plt.imshow(postprocess(output));" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training on cuda\n", "epoch 50, content loss 0.34, style loss 0.63, TV loss 0.79, 0.18 sec\n", "epoch 100, content loss 0.30, style loss 0.50, TV loss 0.74, 0.18 sec\n", "epoch 150, content loss 0.29, style loss 0.46, TV loss 0.72, 0.18 sec\n", "epoch 200, content loss 0.28, style loss 0.43, TV loss 0.70, 0.18 sec\n", "epoch 250, content loss 0.28, style loss 0.43, TV loss 0.69, 0.18 sec\n", "epoch 300, content loss 0.27, style loss 0.42, TV loss 0.69, 0.18 sec\n", "epoch 350, content loss 0.27, style loss 0.42, TV loss 0.69, 0.18 sec\n", "epoch 400, content loss 0.27, style loss 0.42, TV loss 0.69, 0.18 sec\n", "epoch 450, content loss 0.27, style loss 0.42, TV loss 0.69, 0.18 sec\n" ] } ], "source": [ "image_shape = (300, 450)\n", "_, content_Y = get_contents(image_shape, device)\n", "_, style_Y = get_styles(image_shape, device)\n", "X = preprocess(postprocess(output), image_shape).to(device)\n", "big_output = train(X, content_Y, style_Y, device, 0.01, 500, 200)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "d2l.set_figsize((7, 5))\n", "d2l.plt.imshow(postprocess(big_output));" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }