{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 5.2 填充和步幅" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.4.1\n" ] } ], "source": [ "import torch\n", "from torch import nn\n", "\n", "print(torch.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5.2.1 填充" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([8, 8])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 定义一个函数来计算卷积层。它对输入和输出做相应的升维和降维\n", "def comp_conv2d(conv2d, X):\n", " # (1, 1)代表批量大小和通道数(“多输入通道和多输出通道”一节将介绍)均为1\n", " X = X.view((1, 1) + X.shape)\n", " Y = conv2d(X)\n", " return Y.view(Y.shape[2:]) # 排除不关心的前两维:批量和通道\n", "\n", "# 注意这里是两侧分别填充1行或列,所以在两侧一共填充2行或列\n", "conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1)\n", "\n", "X = torch.rand(8, 8)\n", "comp_conv2d(conv2d, X).shape" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([8, 8])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 使用高为5、宽为3的卷积核。在高和宽两侧的填充数分别为2和1\n", "conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))\n", "comp_conv2d(conv2d, X).shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5.2.2 步幅" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([4, 4])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)\n", "comp_conv2d(conv2d, X).shape" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([2, 2])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))\n", "comp_conv2d(conv2d, X).shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }