{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:27.380643Z", "start_time": "2019-05-15T16:12:25.699672Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Thu May 16 00:12:26 2019 \n", "+-----------------------------------------------------------------------------+\n", "| NVIDIA-SMI 390.48 Driver Version: 390.48 |\n", "|-------------------------------+----------------------+----------------------+\n", "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", "|===============================+======================+======================|\n", "| 0 TITAN X (Pascal) Off | 00000000:02:00.0 Off | N/A |\n", "| 46% 75C P2 87W / 250W | 10995MiB / 12196MiB | 0% Default |\n", "+-------------------------------+----------------------+----------------------+\n", "| 1 TITAN X (Pascal) Off | 00000000:04:00.0 Off | N/A |\n", "| 54% 83C P2 93W / 250W | 11671MiB / 12196MiB | 64% Default |\n", "+-------------------------------+----------------------+----------------------+\n", "| 2 TITAN X (Pascal) Off | 00000000:83:00.0 Off | N/A |\n", "| 62% 83C P2 193W / 250W | 12096MiB / 12196MiB | 92% Default |\n", "+-------------------------------+----------------------+----------------------+\n", "| 3 TITAN X (Pascal) Off | 00000000:84:00.0 Off | N/A |\n", "| 51% 82C P2 166W / 250W | 8144MiB / 12196MiB | 58% Default |\n", "+-------------------------------+----------------------+----------------------+\n", " \n", "+-----------------------------------------------------------------------------+\n", "| Processes: GPU Memory |\n", "| GPU PID Type Process name Usage |\n", "|=============================================================================|\n", "| 0 44683 C python 3289MiB |\n", "| 0 155760 C python 4345MiB |\n", "| 0 158310 C python 2297MiB |\n", "| 0 172338 C /home/yzs/anaconda3/bin/python 1031MiB |\n", "| 1 139985 C python 11653MiB |\n", "| 2 38630 C python 5547MiB |\n", "| 2 43127 C python 5791MiB |\n", "| 2 156710 C python3 725MiB |\n", "| 3 14444 C python3 1891MiB |\n", "| 3 43407 C python 5841MiB |\n", "| 3 88478 C /home/tangss/.conda/envs/py36/bin/python 379MiB |\n", "+-----------------------------------------------------------------------------+\n" ] } ], "source": [ "!nvidia-smi" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:29.958567Z", "start_time": "2019-05-15T16:12:27.383299Z" } }, "outputs": [], "source": [ "import torch" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:47.137875Z", "start_time": "2019-05-15T16:12:29.962468Z" } }, "outputs": [ { "data": { "text/plain": [ "Linear(in_features=10, out_features=1, bias=True)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "net = torch.nn.Linear(10, 1).cuda()\n", "net" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:47.143709Z", "start_time": "2019-05-15T16:12:47.139895Z" } }, "outputs": [ { "data": { "text/plain": [ "DataParallel(\n", " (module): Linear(in_features=10, out_features=1, bias=True)\n", ")" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "net = torch.nn.DataParallel(net)\n", "net" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:47.206714Z", "start_time": "2019-05-15T16:12:47.145069Z" } }, "outputs": [], "source": [ "torch.save(net.state_dict(), \"./8.4_model.pt\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:47.260076Z", "start_time": "2019-05-15T16:12:47.208314Z" } }, "outputs": [], "source": [ "new_net = torch.nn.Linear(10, 1)\n", "# new_net.load_state_dict(torch.load(\"./8.4_model.pt\")) # 加载失败" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:47.317397Z", "start_time": "2019-05-15T16:12:47.262131Z" } }, "outputs": [], "source": [ "torch.save(net.module.state_dict(), \"./8.4_model.pt\")\n", "new_net.load_state_dict(torch.load(\"./8.4_model.pt\")) # 加载成功" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2019-05-15T16:12:47.370299Z", "start_time": "2019-05-15T16:12:47.319323Z" } }, "outputs": [], "source": [ "torch.save(net.state_dict(), \"./8.4_model.pt\")\n", "new_net = torch.nn.Linear(10, 1)\n", "new_net = torch.nn.DataParallel(new_net)\n", "new_net.load_state_dict(torch.load(\"./8.4_model.pt\")) # 加载成功" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }