{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 6.8 长短期记忆(LSTM)\n", "## 6.8.2 读取数据集" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0.0 cpu\n" ] } ], "source": [ "import numpy as np\n", "import torch\n", "from torch import nn, optim\n", "import torch.nn.functional as F\n", "\n", "import sys\n", "sys.path.append(\"..\") \n", "import d2lzh_pytorch as d2l\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()\n", "\n", "print(torch.__version__, device)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.8.3 从零开始实现\n", "### 6.8.3.1 初始化模型参数" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "will use cpu\n" ] } ], "source": [ "num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size\n", "print('will use', device)\n", "\n", "def get_params():\n", " def _one(shape):\n", " ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)\n", " return torch.nn.Parameter(ts, requires_grad=True)\n", " def _three():\n", " return (_one((num_inputs, num_hiddens)),\n", " _one((num_hiddens, num_hiddens)),\n", " torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))\n", " \n", " W_xi, W_hi, b_i = _three() # 输入门参数\n", " W_xf, W_hf, b_f = _three() # 遗忘门参数\n", " W_xo, W_ho, b_o = _three() # 输出门参数\n", " W_xc, W_hc, b_c = _three() # 候选记忆细胞参数\n", " \n", " # 输出层参数\n", " W_hq = _one((num_hiddens, num_outputs))\n", " b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)\n", " return nn.ParameterList([W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.8.4 定义模型" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def init_lstm_state(batch_size, num_hiddens, device):\n", " return (torch.zeros((batch_size, num_hiddens), device=device), \n", " torch.zeros((batch_size, num_hiddens), device=device))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def lstm(inputs, state, params):\n", " [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params\n", " (H, C) = state\n", " outputs = []\n", " for X in inputs:\n", " I = torch.sigmoid(torch.matmul(X, W_xi) + torch.matmul(H, W_hi) + b_i)\n", " F = torch.sigmoid(torch.matmul(X, W_xf) + torch.matmul(H, W_hf) + b_f)\n", " O = torch.sigmoid(torch.matmul(X, W_xo) + torch.matmul(H, W_ho) + b_o)\n", " C_tilda = torch.tanh(torch.matmul(X, W_xc) + torch.matmul(H, W_hc) + b_c)\n", " C = F * C + I * C_tilda\n", " H = O * C.tanh()\n", " Y = torch.matmul(H, W_hq) + b_q\n", " outputs.append(Y)\n", " return outputs, (H, C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 6.8.4.1 训练模型并创作歌词" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2\n", "pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch 40, perplexity 211.416571, time 1.37 sec\n", " - 分开 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我\n", " - 不分开 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我 我不的我\n", "epoch 80, perplexity 67.048346, time 1.35 sec\n", " - 分开 我想你你 我不要再想 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我 我不\n", " - 不分开 我想你你想你 我不要这不样 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我 我不要这我\n", "epoch 120, perplexity 15.552743, time 1.36 sec\n", " - 分开 我想带你的微笑 像这在 你想我 我想你 说你我 说你了 说给怎么么 有你在空 你在在空 在你的空 \n", " - 不分开 我想要你已经堡 一样样 说你了 我想就这样着你 不知不觉 你已了离开活 后知后觉 我该了这生活 我\n", "epoch 160, perplexity 4.274031, time 1.35 sec\n", " - 分开 我想带你 你不一外在半空 我只能够远远著她 这些我 你想我难难头 一话看人对落我一望望我 我不那这\n", " - 不分开 我想你这生堡 我知好烦 你不的节我 后知后觉 我该了这节奏 后知后觉 又过了一个秋 后知后觉 我该\n" ] } ], "source": [ "d2l.train_and_predict_rnn(lstm, get_params, init_lstm_state, num_hiddens,\n", " vocab_size, device, corpus_indices, idx_to_char,\n", " char_to_idx, False, num_epochs, num_steps, lr,\n", " clipping_theta, batch_size, pred_period, pred_len,\n", " prefixes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.8.5 简洁实现" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch 40, perplexity 1.020401, time 1.54 sec\n", " - 分开始想担 妈跟我 一定是我妈在 因为分手前那句抱歉 在感动 穿梭时间的画面的钟 从反方向开始移动 回到\n", " - 不分开始想像 妈跟我 我将我的寂寞封闭 然后在这里 不限日期 然后将过去 慢慢温习 让我爱上你 那场悲剧 \n", "epoch 80, perplexity 1.011164, time 1.34 sec\n", " - 分开始想担 你的 从前的可爱女人 温柔的让我心疼的可爱女人 透明的让我感动的可爱女人 坏坏的让我疯狂的可\n", " - 不分开 我满了 让我疯狂的可爱女人 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让我感动的可\n", "epoch 120, perplexity 1.025348, time 1.39 sec\n", " - 分开始共渡每一天 手牵手 一步两步三步四步望著天 看星星 一颗两颗三颗四颗 连成线背著背默默许下心愿 看\n", " - 不分开 我不懂 说了没用 他的笑容 有何不同 在你心中 我不再受宠 我的天空 是雨是风 还是彩虹 你在操纵\n", "epoch 160, perplexity 1.017492, time 1.42 sec\n", " - 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让\n", " - 不分开 我不能再想 我不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不要再\n" ] } ], "source": [ "lr = 1e-2 # 注意调整学习率\n", "lstm_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens)\n", "model = d2l.RNNModel(lstm_layer, vocab_size)\n", "d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,\n", " corpus_indices, idx_to_char, char_to_idx,\n", " num_epochs, num_steps, lr, clipping_theta,\n", " batch_size, pred_period, pred_len, prefixes)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }