{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 6.4 循环神经网络的从零开始实现" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.4.0\n", "cuda\n" ] } ], "source": [ "import time\n", "import math\n", "import numpy as np\n", "import torch\n", "from torch import nn, optim\n", "import torch.nn.functional as F\n", "\n", "import sys\n", "sys.path.append(\"..\") \n", "import d2lzh_pytorch as d2l\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "print(torch.__version__)\n", "print(device)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.4.1 one-hot向量" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 1., 0., 0., ..., 0., 0., 0.],\n", " [ 0., 0., 1., ..., 0., 0., 0.]])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def one_hot(x, n_class, dtype=torch.float32): \n", " # X shape: (batch), output shape: (batch, n_class)\n", " x = x.long()\n", " res = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)\n", " res.scatter_(1, x.view(-1, 1), 1)\n", " return res\n", " \n", "x = torch.tensor([0, 2])\n", "one_hot(x, vocab_size)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5 torch.Size([2, 1027])\n" ] } ], "source": [ "# 本函数已保存在d2lzh_pytorch包中方便以后使用\n", "def to_onehot(X, n_class): \n", " # X shape: (batch, seq_len), output: seq_len elements of (batch, n_class)\n", " return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]\n", "\n", "X = torch.arange(10).view(2, 5)\n", "inputs = to_onehot(X, vocab_size)\n", "print(len(inputs), inputs[0].shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.4.2 初始化模型参数" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "will use cuda\n" ] } ], "source": [ "num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size\n", "print('will use', device)\n", "\n", "def get_params():\n", " def _one(shape):\n", " ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)\n", " return torch.nn.Parameter(ts, requires_grad=True)\n", "\n", " # 隐藏层参数\n", " W_xh = _one((num_inputs, num_hiddens))\n", " W_hh = _one((num_hiddens, num_hiddens))\n", " b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device, requires_grad=True))\n", " # 输出层参数\n", " W_hq = _one((num_hiddens, num_outputs))\n", " b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, requires_grad=True))\n", " return nn.ParameterList([W_xh, W_hh, b_h, W_hq, b_q])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.4.3 定义模型" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def init_rnn_state(batch_size, num_hiddens, device):\n", " return (torch.zeros((batch_size, num_hiddens), device=device), )" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def rnn(inputs, state, params):\n", " # inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵\n", " W_xh, W_hh, b_h, W_hq, b_q = params\n", " H, = state\n", " outputs = []\n", " for X in inputs:\n", " H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)\n", " Y = torch.matmul(H, W_hq) + b_q\n", " outputs.append(Y)\n", " return outputs, (H,)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5 torch.Size([2, 1027]) torch.Size([2, 256])\n" ] } ], "source": [ "state = init_rnn_state(X.shape[0], num_hiddens, device)\n", "inputs = to_onehot(X.to(device), vocab_size)\n", "params = get_params()\n", "outputs, state_new = rnn(inputs, state, params)\n", "print(len(outputs), outputs[0].shape, state_new[0].shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.4.4 定义预测函数" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 本函数已保存在d2lzh_pytorch包中方便以后使用\n", "def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,\n", " num_hiddens, vocab_size, device, idx_to_char, char_to_idx):\n", " state = init_rnn_state(1, num_hiddens, device)\n", " output = [char_to_idx[prefix[0]]]\n", " for t in range(num_chars + len(prefix) - 1):\n", " # 将上一时间步的输出作为当前时间步的输入\n", " X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)\n", " # 计算输出和更新隐藏状态\n", " (Y, state) = rnn(X, state, params)\n", " # 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符\n", " if t < len(prefix) - 1:\n", " output.append(char_to_idx[prefix[t + 1]])\n", " else:\n", " output.append(int(Y[0].argmax(dim=1).item()))\n", " return ''.join([idx_to_char[i] for i in output])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'分开西圈绪升王凝瓜必客映'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,\n", " device, idx_to_char, char_to_idx)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.4.5 裁剪梯度" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 本函数已保存在d2lzh_pytorch包中方便以后使用\n", "def grad_clipping(params, theta, device):\n", " norm = torch.tensor([0.0], device=device)\n", " for param in params:\n", " norm += (param.grad.data ** 2).sum()\n", " norm = norm.sqrt().item()\n", " if norm > theta:\n", " for param in params:\n", " param.grad.data *= (theta / norm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.4.6 困惑度\n", "## 6.4.7 定义模型训练函数" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 本函数已保存在d2lzh_pytorch包中方便以后使用\n", "def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,\n", " vocab_size, device, corpus_indices, idx_to_char,\n", " char_to_idx, is_random_iter, num_epochs, num_steps,\n", " lr, clipping_theta, batch_size, pred_period,\n", " pred_len, prefixes):\n", " if is_random_iter:\n", " data_iter_fn = d2l.data_iter_random\n", " else:\n", " data_iter_fn = d2l.data_iter_consecutive\n", " params = get_params()\n", " loss = nn.CrossEntropyLoss()\n", "\n", " for epoch in range(num_epochs):\n", " if not is_random_iter: # 如使用相邻采样,在epoch开始时初始化隐藏状态\n", " state = init_rnn_state(batch_size, num_hiddens, device)\n", " l_sum, n, start = 0.0, 0, time.time()\n", " data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)\n", " for X, Y in data_iter:\n", " if is_random_iter: # 如使用随机采样,在每个小批量更新前初始化隐藏状态\n", " state = init_rnn_state(batch_size, num_hiddens, device)\n", " else: # 否则需要使用detach函数从计算图分离隐藏状态\n", " for s in state:\n", " s.detach_()\n", " \n", " inputs = to_onehot(X, vocab_size)\n", " # outputs有num_steps个形状为(batch_size, vocab_size)的矩阵\n", " (outputs, state) = rnn(inputs, state, params)\n", " # 拼接之后形状为(num_steps * batch_size, vocab_size)\n", " outputs = torch.cat(outputs, dim=0)\n", " # Y的形状是(batch_size, num_steps),转置后再变成长度为\n", " # batch * num_steps 的向量,这样跟输出的行一一对应\n", " y = torch.transpose(Y, 0, 1).contiguous().view(-1)\n", " # 使用交叉熵损失计算平均分类误差\n", " l = loss(outputs, y.long())\n", " \n", " # 梯度清0\n", " if params[0].grad is not None:\n", " for param in params:\n", " param.grad.data.zero_()\n", " l.backward()\n", " grad_clipping(params, clipping_theta, device) # 裁剪梯度\n", " d2l.sgd(params, lr, 1) # 因为误差已经取过均值,梯度不用再做平均\n", " l_sum += l.item() * y.shape[0]\n", " n += y.shape[0]\n", "\n", " if (epoch + 1) % pred_period == 0:\n", " print('epoch %d, perplexity %f, time %.2f sec' % (\n", " epoch + 1, math.exp(l_sum / n), time.time() - start))\n", " for prefix in prefixes:\n", " print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,\n", " num_hiddens, vocab_size, device, idx_to_char, char_to_idx))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6.4.8 训练模型并创作歌词" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2\n", "pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch 50, perplexity 70.039647, time 0.11 sec\n", " - 分开 我不要再想 我不能 想你的让我 我的可 你怎么 一颗四 一颗四 我不要 一颗两 一颗四 一颗四 我\n", " - 不分开 我不要再 你你的外 在人 别你的让我 狂的可 语人两 我不要 一颗两 一颗四 一颗四 我不要 一\n", "epoch 100, perplexity 9.726828, time 0.12 sec\n", " - 分开 一直的美栈人 一起看 我不要好生活 你知不觉 我已好好生活 我知道好生活 后知不觉 我跟了这生活 \n", " - 不分开堡 我不要再想 我不 我不 我不要再想你 不知不觉 你已经离开我 不知不觉 我跟了好生活 我知道好生\n", "epoch 150, perplexity 2.864874, time 0.11 sec\n", " - 分开 一只会停留 有不它元羞 这蝪什么奇怪的事都有 包括像猫的狗 印地安老斑鸠 平常话不多 除非是乌鸦抢\n", " - 不分开扫 我不你再想 我不能再想 我不 我不 我不要再想你 不知不觉 你已经离开我 不知不觉 我跟了这节奏\n", "epoch 200, perplexity 1.597790, time 0.11 sec\n", " - 分开 有杰伦 干 载颗拳满的让空美空主 相爱还有个人 再狠狠忘记 你爱过我的证 有晶莹的手滴 让说些人\n", " - 不分开扫 我叫你爸 你打我妈 这样对吗干嘛这样 何必让它牵鼻子走 瞎 说底牵打我妈要 难道球耳 快使用双截\n", "epoch 250, perplexity 1.303903, time 0.12 sec\n", " - 分开 有杰人开留 仙唱它怕羞 蜥蝪横著走 这里什么奇怪的事都有 包括像猫的狗 印地安老斑鸠 平常话不多 \n", " - 不分开简 我不能再想 我不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不能\n" ] } ], "source": [ "train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,\n", " vocab_size, device, corpus_indices, idx_to_char,\n", " char_to_idx, True, num_epochs, num_steps, lr,\n", " clipping_theta, batch_size, pred_period, pred_len,\n", " prefixes)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch 50, perplexity 59.514416, time 0.11 sec\n", " - 分开 我想要这 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空\n", " - 不分开 我不要这 全使了双 我想了这 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空\n", "epoch 100, perplexity 6.801417, time 0.11 sec\n", " - 分开 我说的这样笑 想你都 不着我 我想就这样牵 你你的回不笑多难的 它在云实 有一条事 全你了空 \n", " - 不分开觉 你已经离开我 不知不觉 我跟好这节活 我该好好生活 不知不觉 你跟了离开我 不知不觉 我跟好这节\n", "epoch 150, perplexity 2.063730, time 0.16 sec\n", " - 分开 我有到这样牵着你的手不放开 爱可不可以简简单单没有伤 古有你烦 我有多烦恼向 你知带悄 回我的外\n", " - 不分开觉 你已经很个我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后哼哈兮 快使用双截棍 哼哼哈兮 \n", "epoch 200, perplexity 1.300031, time 0.11 sec\n", " - 分开 我想要这样牵着你的手不放开 爱能不能够永远单甜没有伤害 你 靠着我的肩膀 你 在我胸口睡著 像这样\n", " - 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生\n", "epoch 250, perplexity 1.164455, time 0.11 sec\n", " - 分开 我有一这样布 对你依依不舍 连隔壁邻居都猜到我现在的感受 河边的风 在吹着头发飘动 牵着你的手 一\n", " - 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生\n" ] } ], "source": [ "train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,\n", " vocab_size, device, corpus_indices, idx_to_char,\n", " char_to_idx, False, num_epochs, num_steps, lr,\n", " clipping_theta, batch_size, pred_period, pred_len,\n", " prefixes)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }