{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 3.9 多层感知机的从零开始实现" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.4.1\n" ] } ], "source": [ "import torch\n", "import numpy as np\n", "import sys\n", "sys.path.append(\"..\") # 为了导入上层目录的d2lzh_pytorch\n", "import d2lzh_pytorch as d2l\n", "\n", "print(torch.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.9.1 获取和读取数据" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "batch_size = 256\n", "train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.9.2 定义模型参数" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "num_inputs, num_outputs, num_hiddens = 784, 10, 256\n", "\n", "W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)\n", "b1 = torch.zeros(num_hiddens, dtype=torch.float)\n", "W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)\n", "b2 = torch.zeros(num_outputs, dtype=torch.float)\n", "\n", "params = [W1, b1, W2, b2]\n", "for param in params:\n", " param.requires_grad_(requires_grad=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.9.3 定义激活函数" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def relu(X):\n", " return torch.max(input=X, other=torch.tensor(0.0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.9.4 定义模型" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def net(X):\n", " X = X.view((-1, num_inputs))\n", " H = relu(torch.matmul(X, W1) + b1)\n", " return torch.matmul(H, W2) + b2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.9.5 定义损失函数" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "loss = torch.nn.CrossEntropyLoss()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.9.6 训练模型" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch 1, loss 0.0030, train acc 0.714, test acc 0.753\n", "epoch 2, loss 0.0019, train acc 0.821, test acc 0.777\n", "epoch 3, loss 0.0017, train acc 0.842, test acc 0.834\n", "epoch 4, loss 0.0015, train acc 0.857, test acc 0.839\n", "epoch 5, loss 0.0014, train acc 0.865, test acc 0.845\n" ] } ], "source": [ "num_epochs, lr = 5, 100.0\n", "d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }