{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 3.6 softmax回归的从零开始实现" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.4.1\n", "0.2.1\n" ] } ], "source": [ "import torch\n", "import torchvision\n", "import numpy as np\n", "import sys\n", "sys.path.append(\"..\") # 为了导入上层目录的d2lzh_pytorch\n", "import d2lzh_pytorch as d2l\n", "\n", "print(torch.__version__)\n", "print(torchvision.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.1 获取和读取数据" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "batch_size = 256\n", "train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.2 初始化模型参数" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "num_inputs = 784\n", "num_outputs = 10\n", "\n", "W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)\n", "b = torch.zeros(num_outputs, dtype=torch.float)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "W.requires_grad_(requires_grad=True)\n", "b.requires_grad_(requires_grad=True) " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[5, 7, 9]])\n", "tensor([[ 6],\n", " [15]])\n" ] } ], "source": [ "X = torch.tensor([[1, 2, 3], [4, 5, 6]])\n", "print(X.sum(dim=0, keepdim=True))\n", "print(X.sum(dim=1, keepdim=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.3 实现softmax运算" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def softmax(X):\n", " X_exp = X.exp()\n", " partition = X_exp.sum(dim=1, keepdim=True)\n", " return X_exp / partition # 这里应用了广播机制" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0.1195, 0.2642, 0.2857, 0.1721, 0.1585],\n", " [0.1918, 0.1353, 0.1837, 0.3329, 0.1562]]) tensor([1., 1.])\n" ] } ], "source": [ "X = torch.rand((2, 5))\n", "X_prob = softmax(X)\n", "print(X_prob, X_prob.sum(dim=1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.4 定义模型" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def net(X):\n", " return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.5 定义损失函数" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.1000],\n", " [0.5000]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\n", "y = torch.LongTensor([0, 2])\n", "y_hat.gather(1, y.view(-1, 1))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def cross_entropy(y_hat, y):\n", " return - torch.log(y_hat.gather(1, y.view(-1, 1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.6 计算分类准确率" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def accuracy(y_hat, y):\n", " return (y_hat.argmax(dim=1) == y).float().mean().item()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.5\n" ] } ], "source": [ "print(accuracy(y_hat, y))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述\n", "def evaluate_accuracy(data_iter, net):\n", " acc_sum, n = 0.0, 0\n", " for X, y in data_iter:\n", " acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()\n", " n += y.shape[0]\n", " return acc_sum / n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0681\n" ] } ], "source": [ "print(evaluate_accuracy(test_iter, net))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.7 训练模型" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "epoch 1, loss 0.7878, train acc 0.749, test acc 0.794\n", "epoch 2, loss 0.5702, train acc 0.814, test acc 0.813\n", "epoch 3, loss 0.5252, train acc 0.827, test acc 0.819\n", "epoch 4, loss 0.5010, train acc 0.833, test acc 0.824\n", "epoch 5, loss 0.4858, train acc 0.836, test acc 0.815\n" ] } ], "source": [ "num_epochs, lr = 5, 0.1\n", "\n", "# 本函数已保存在d2lzh_pytorch包中方便以后使用\n", "def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,\n", " params=None, lr=None, optimizer=None):\n", " for epoch in range(num_epochs):\n", " train_l_sum, train_acc_sum, n = 0.0, 0.0, 0\n", " for X, y in train_iter:\n", " y_hat = net(X)\n", " l = loss(y_hat, y).sum()\n", " \n", " # 梯度清零\n", " if optimizer is not None:\n", " optimizer.zero_grad()\n", " elif params is not None and params[0].grad is not None:\n", " for param in params:\n", " param.grad.data.zero_()\n", " \n", " l.backward()\n", " if optimizer is None:\n", " d2l.sgd(params, lr, batch_size)\n", " else:\n", " optimizer.step() # “softmax回归的简洁实现”一节将用到\n", " \n", " \n", " train_l_sum += l.item()\n", " train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()\n", " n += y.shape[0]\n", " test_acc = evaluate_accuracy(test_iter, net)\n", " print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'\n", " % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))\n", "\n", "train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.6.8 预测" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "X, y = iter(test_iter).next()\n", "\n", "true_labels = d2l.get_fashion_mnist_labels(y.numpy())\n", "pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())\n", "titles = [true + '\\n' + pred for true, pred in zip(true_labels, pred_labels)]\n", "\n", "d2l.show_fashion_mnist(X[0:9], titles[0:9])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }