{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.4.1\n" ] } ], "source": [ "import torch\n", "\n", "print(torch.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2.3 自动求梯度\n", "## 2.3.1 概念\n", "上一节介绍的`Tensor`是这个包的核心类,如果将其属性`.requires_grad`设置为`True`,它将开始追踪(track)在其上的所有操作。完成计算后,可以调用`.backward()`来完成所有梯度计算。此`Tensor`的梯度将累积到`.grad`属性中。\n", "> 注意在调用`.backward()`时,如果`Tensor`是标量,则不需要为`backward()`指定任何参数;否则,需要指定一个求导变量。\n", "\n", "如果不想要被继续追踪,可以调用`.detach()`将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪。此外,还可以用`with torch.no_grad()`将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(`requires_grad=True`)的梯度。\n", "\n", "`Function`是另外一个很重要的类。`Tensor`和`Function`互相结合就可以构建一个记录有整个计算过程的非循环图。每个`Tensor`都有一个`.grad_fn`属性,该属性即创建该`Tensor`的`Function`(除非用户创建的`Tensor`s时设置了`grad_fn=None`)。\n", "\n", "下面通过一些例子来理解这些概念。\n", "\n", "## 2.3.2 `Tensor`" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[1., 1.],\n", " [1., 1.]], requires_grad=True)\n", "None\n" ] } ], "source": [ "x = torch.ones(2, 2, requires_grad=True)\n", "print(x)\n", "print(x.grad_fn)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[3., 3.],\n", " [3., 3.]], grad_fn=)\n", "\n" ] } ], "source": [ "y = x + 2\n", "print(y)\n", "print(y.grad_fn)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "注意x是直接创建的,所以它没有`grad_fn`, 而y是通过一个加法操作创建的,所以它有一个为``的`grad_fn`。" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True False\n" ] } ], "source": [ "print(x.is_leaf, y.is_leaf)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[27., 27.],\n", " [27., 27.]], grad_fn=) tensor(27., grad_fn=)\n" ] } ], "source": [ "z = y * y * 3\n", "out = z.mean()\n", "print(z, out)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "通过`.requires_grad_()`来用in-place的方式改变`requires_grad`属性:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n", "True\n", "\n" ] } ], "source": [ "a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False\n", "a = ((a * 3) / (a - 1))\n", "print(a.requires_grad) # False\n", "a.requires_grad_(True)\n", "print(a.requires_grad) # True\n", "b = (a * a).sum()\n", "print(b.grad_fn)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.3.3 梯度 \n", "\n", "因为`out`是一个标量,所以调用`backward()`时不需要指定求导变量:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[4.5000, 4.5000],\n", " [4.5000, 4.5000]])\n" ] } ], "source": [ "out.backward() # 等价于 out.backward(torch.tensor(1.))\n", "print(x.grad)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "我们令`out`为 $o$ , 因为\n", "$$\n", "o=\\frac14\\sum_{i=1}^4z_i=\\frac14\\sum_{i=1}^43(x_i+2)^2\n", "$$\n", "所以\n", "$$\n", "\\frac{\\partial{o}}{\\partial{x_i}}\\bigr\\rvert_{x_i=1}=\\frac{9}{2}=4.5\n", "$$\n", "所以上面的输出是正确的。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "数学上,如果有一个函数值和自变量都为向量的函数 $\\vec{y}=f(\\vec{x})$, 那么 $\\vec{y}$ 关于 $\\vec{x}$ 的梯度就是一个雅可比矩阵(Jacobian matrix):\n", "\n", "$$\n", "J=\\left(\\begin{array}{ccc}\n", " \\frac{\\partial y_{1}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{1}}{\\partial x_{n}}\\\\\n", " \\vdots & \\ddots & \\vdots\\\\\n", " \\frac{\\partial y_{m}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{m}}{\\partial x_{n}}\n", " \\end{array}\\right)\n", "$$\n", "\n", "而``torch.autograd``这个包就是用来计算一些雅克比矩阵的乘积的。例如,如果 $v$ 是一个标量函数的 $l=g\\left(\\vec{y}\\right)$ 的梯度:\n", "\n", "$$\n", "v=\\left(\\begin{array}{ccc}\\frac{\\partial l}{\\partial y_{1}} & \\cdots & \\frac{\\partial l}{\\partial y_{m}}\\end{array}\\right)\n", "$$\n", "\n", "那么根据链式法则我们有 $l$ 关于 $\\vec{x}$ 的雅克比矩阵就为:\n", "\n", "$$\n", "v \\cdot J=\\left(\\begin{array}{ccc}\\frac{\\partial l}{\\partial y_{1}} & \\cdots & \\frac{\\partial l}{\\partial y_{m}}\\end{array}\\right) \\left(\\begin{array}{ccc}\n", " \\frac{\\partial y_{1}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{1}}{\\partial x_{n}}\\\\\n", " \\vdots & \\ddots & \\vdots\\\\\n", " \\frac{\\partial y_{m}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{m}}{\\partial x_{n}}\n", " \\end{array}\\right)=\\left(\\begin{array}{ccc}\\frac{\\partial l}{\\partial x_{1}} & \\cdots & \\frac{\\partial l}{\\partial x_{n}}\\end{array}\\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[5.5000, 5.5000],\n", " [5.5000, 5.5000]])\n", "tensor([[1., 1.],\n", " [1., 1.]])\n" ] } ], "source": [ "# 再来反向传播一次,注意grad是累加的\n", "out2 = x.sum()\n", "out2.backward()\n", "print(x.grad)\n", "\n", "out3 = x.sum()\n", "x.grad.data.zero_()\n", "out3.backward()\n", "print(x.grad)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[2., 4.],\n", " [6., 8.]], grad_fn=)\n" ] } ], "source": [ "x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)\n", "y = 2 * x\n", "z = y.view(2, 2)\n", "print(z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "现在 `y` 不是一个标量,所以在调用`backward`时需要传入一个和`y`同形的权重向量进行加权求和得到一个标量。" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([2.0000, 0.2000, 0.0200, 0.0020])\n" ] } ], "source": [ "v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)\n", "z.backward(v)\n", "\n", "print(x.grad)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "再来看看中断梯度追踪的例子:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(1., requires_grad=True) True\n", "tensor(1., grad_fn=) True\n", "tensor(1.) False\n", "tensor(2., grad_fn=) True\n" ] } ], "source": [ "x = torch.tensor(1.0, requires_grad=True)\n", "y1 = x ** 2 \n", "with torch.no_grad():\n", " y2 = x ** 3\n", "y3 = y1 + y2\n", " \n", "print(x, x.requires_grad)\n", "print(y1, y1.requires_grad)\n", "print(y2, y2.requires_grad)\n", "print(y3, y3.requires_grad)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(2.)\n" ] } ], "source": [ "y3.backward()\n", "print(x.grad)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "为什么是2呢?$ y_3 = y_1 + y_2 = x^2 + x^3$,当 $x=1$ 时 $\\frac {dy_3} {dx}$ 不应该是5吗?事实上,由于 $y_2$ 的定义是被`torch.no_grad():`包裹的,所以与 $y_2$ 有关的梯度是不会回传的,只有与 $y_1$ 有关的梯度才会回传,即 $x^2$ 对 $x$ 的梯度。\n", "\n", "上面提到,`y2.requires_grad=False`,所以不能调用 `y2.backward()`。" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# y2.backward() # 会报错 RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "如果我们想要修改`tensor`的数值,但是又不希望被`autograd`记录(即不会影响反向传播),那么我么可以对`tensor.data`进行操作." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([1.])\n", "False\n", "tensor([100.], requires_grad=True)\n", "tensor([2.])\n" ] } ], "source": [ "x = torch.ones(1,requires_grad=True)\n", "\n", "print(x.data) # 还是一个tensor\n", "print(x.data.requires_grad) # 但是已经是独立于计算图之外\n", "\n", "y = 2 * x\n", "x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播\n", "\n", "y.backward()\n", "print(x) # 更改data的值也会影响tensor的值\n", "print(x.grad)" ] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }