You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

171 lines
3.4 KiB

3 years ago
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5.2 填充和步幅"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.4.1\n"
]
}
],
"source": [
"import torch\n",
"from torch import nn\n",
"\n",
"print(torch.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.2.1 填充"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([8, 8])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 定义一个函数来计算卷积层。它对输入和输出做相应的升维和降维\n",
"def comp_conv2d(conv2d, X):\n",
" # (1, 1)代表批量大小和通道数“多输入通道和多输出通道”一节将介绍均为1\n",
" X = X.view((1, 1) + X.shape)\n",
" Y = conv2d(X)\n",
" return Y.view(Y.shape[2:]) # 排除不关心的前两维:批量和通道\n",
"\n",
"# 注意这里是两侧分别填充1行或列所以在两侧一共填充2行或列\n",
"conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1)\n",
"\n",
"X = torch.rand(8, 8)\n",
"comp_conv2d(conv2d, X).shape"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([8, 8])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 使用高为5、宽为3的卷积核。在高和宽两侧的填充数分别为2和1\n",
"conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))\n",
"comp_conv2d(conv2d, X).shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5.2.2 步幅"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([4, 4])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)\n",
"comp_conv2d(conv2d, X).shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([2, 2])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))\n",
"comp_conv2d(conv2d, X).shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}