You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

248 lines
8.6 KiB

3 years ago
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 6.7 门控循环单元GRU\n",
"## 6.7.2 读取数据集"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.2.0 cpu\n"
]
}
],
"source": [
"import numpy as np\n",
"import torch\n",
"from torch import nn, optim\n",
"import torch.nn.functional as F\n",
"\n",
"import sys\n",
"sys.path.append(\"..\") \n",
"import d2lzh_pytorch as d2l\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
"(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()\n",
"print(torch.__version__, device)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.7.3 从零开始实现\n",
"### 6.7.3.1 初始化模型参数"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"will use cpu\n"
]
}
],
"source": [
"num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size\n",
"print('will use', device)\n",
"\n",
"def get_params():\n",
" def _one(shape):\n",
" ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)\n",
" return torch.nn.Parameter(ts, requires_grad=True)\n",
" def _three():\n",
" return (_one((num_inputs, num_hiddens)),\n",
" _one((num_hiddens, num_hiddens)),\n",
" torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))\n",
" \n",
" W_xz, W_hz, b_z = _three() # 更新门参数\n",
" W_xr, W_hr, b_r = _three() # 重置门参数\n",
" W_xh, W_hh, b_h = _three() # 候选隐藏状态参数\n",
" \n",
" # 输出层参数\n",
" W_hq = _one((num_hiddens, num_outputs))\n",
" b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)\n",
" return nn.ParameterList([W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.7.3.2 定义模型"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def init_gru_state(batch_size, num_hiddens, device):\n",
" return (torch.zeros((batch_size, num_hiddens), device=device), )"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def gru(inputs, state, params):\n",
" W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params\n",
" H, = state\n",
" outputs = []\n",
" for X in inputs:\n",
" Z = torch.sigmoid(torch.matmul(X, W_xz) + torch.matmul(H, W_hz) + b_z)\n",
" R = torch.sigmoid(torch.matmul(X, W_xr) + torch.matmul(H, W_hr) + b_r)\n",
" H_tilda = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(R * H, W_hh) + b_h)\n",
" H = Z * H + (1 - Z) * H_tilda\n",
" Y = torch.matmul(H, W_hq) + b_q\n",
" outputs.append(Y)\n",
" return outputs, (H,)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.7.3.3 训练模型并创作歌词"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2\n",
"pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 40, perplexity 150.963116, time 1.11 sec\n",
" - 分开 我想你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我\n",
" - 不分开 我想你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我不你 我\n",
"epoch 80, perplexity 31.683252, time 1.16 sec\n",
" - 分开 我想要你的微笑 一定 \n",
" - 不分开 不知不觉 我不要再想 我不要再想 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不\n",
"epoch 120, perplexity 5.855305, time 1.49 sec\n",
" - 分开我 想要你这样打我妈妈 难道你手不会痛吗 我想你这样打我妈妈 难道你手 你怎么在我想 说散 你说我久\n",
" - 不分开 没有你在我有多烦熬多烦恼 没有你烦 我有多烦恼 没有你在我有多难熬多难多 没有你烦 我有多\n",
"epoch 160, perplexity 1.815359, time 1.04 sec\n",
" - 分开 我想要这样牵 对你依依不舍 连隔壁邻居都猜到我现在的感受 河边的风 在吹着头发飘动 牵着你的手 一\n",
" - 不分开 是后过风 迷不知蒙 我给再这样活 我该好好生活 不知不觉 你已经离开我 不知不觉 我跟了这节奏 \n"
]
}
],
"source": [
"d2l.train_and_predict_rnn(gru, get_params, init_gru_state, num_hiddens,\n",
" vocab_size, device, corpus_indices, idx_to_char,\n",
" char_to_idx, False, num_epochs, num_steps, lr,\n",
" clipping_theta, batch_size, pred_period, pred_len,\n",
" prefixes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.7.4 简洁实现"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 40, perplexity 1.018485, time 0.79 sec\n",
" - 分开的快乐是你 想你想的都会笑 没有你在 我有多难熬 没有你在我有多难熬多烦恼 没有你烦 我有多烦恼\n",
" - 不分开不 我不 我不要再想你 爱情来的太快就像龙卷风 离不开暴风圈来不及逃 我不能再想 我不能再想 我不 \n",
"epoch 80, perplexity 1.028805, time 0.74 sec\n",
" - 分开始想像 爸和妈当年的模样 说著一口吴侬软语的姑娘缓缓走过外滩 消失的 旧时光 一九四三 回头看 的片\n",
" - 不分开不 我不 我不 我不要再想你 爱情来的太快就像龙卷风 离不开暴风圈来不及逃 我不能再想 我不能再想 \n",
"epoch 120, perplexity 1.012296, time 0.73 sec\n",
" - 分开的话像语言暴力 我已无能为力再提起 决定中断熟悉 然后在这里 不限日期 然后将过去 慢慢温习 让我爱\n",
" - 不分开不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不要再想 我不 我不 \n",
"epoch 160, perplexity 1.184842, time 0.74 sec\n",
" - 分开的快乐是你 想我想大声宣布 对你依依不舍 连隔壁邻居都猜到我现在的感受 河边的风 在吹着头发飘动 牵\n",
" - 不分开 快使用双截棍 哼哼哈兮 如果我有轻功 飞檐走壁 为人耿直不屈 一身正气 他们儿子我习惯 从小就耳濡\n"
]
}
],
"source": [
"lr = 1e-2\n",
"gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens)\n",
"model = d2l.RNNModel(gru_layer, vocab_size).to(device)\n",
"d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,\n",
" corpus_indices, idx_to_char, char_to_idx,\n",
" num_epochs, num_steps, lr, clipping_theta,\n",
" batch_size, pred_period, pred_len, prefixes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}