You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

482 lines
16 KiB

3 years ago
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 6.4 循环神经网络的从零开始实现"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.4.0\n",
"cuda\n"
]
}
],
"source": [
"import time\n",
"import math\n",
"import numpy as np\n",
"import torch\n",
"from torch import nn, optim\n",
"import torch.nn.functional as F\n",
"\n",
"import sys\n",
"sys.path.append(\"..\") \n",
"import d2lzh_pytorch as d2l\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
"print(torch.__version__)\n",
"print(device)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.4.1 one-hot向量"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[ 1., 0., 0., ..., 0., 0., 0.],\n",
" [ 0., 0., 1., ..., 0., 0., 0.]])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def one_hot(x, n_class, dtype=torch.float32): \n",
" # X shape: (batch), output shape: (batch, n_class)\n",
" x = x.long()\n",
" res = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)\n",
" res.scatter_(1, x.view(-1, 1), 1)\n",
" return res\n",
" \n",
"x = torch.tensor([0, 2])\n",
"one_hot(x, vocab_size)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5 torch.Size([2, 1027])\n"
]
}
],
"source": [
"# 本函数已保存在d2lzh_pytorch包中方便以后使用\n",
"def to_onehot(X, n_class): \n",
" # X shape: (batch, seq_len), output: seq_len elements of (batch, n_class)\n",
" return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]\n",
"\n",
"X = torch.arange(10).view(2, 5)\n",
"inputs = to_onehot(X, vocab_size)\n",
"print(len(inputs), inputs[0].shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.4.2 初始化模型参数"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"will use cuda\n"
]
}
],
"source": [
"num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size\n",
"print('will use', device)\n",
"\n",
"def get_params():\n",
" def _one(shape):\n",
" ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)\n",
" return torch.nn.Parameter(ts, requires_grad=True)\n",
"\n",
" # 隐藏层参数\n",
" W_xh = _one((num_inputs, num_hiddens))\n",
" W_hh = _one((num_hiddens, num_hiddens))\n",
" b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device, requires_grad=True))\n",
" # 输出层参数\n",
" W_hq = _one((num_hiddens, num_outputs))\n",
" b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, requires_grad=True))\n",
" return nn.ParameterList([W_xh, W_hh, b_h, W_hq, b_q])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.4.3 定义模型"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def init_rnn_state(batch_size, num_hiddens, device):\n",
" return (torch.zeros((batch_size, num_hiddens), device=device), )"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def rnn(inputs, state, params):\n",
" # inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵\n",
" W_xh, W_hh, b_h, W_hq, b_q = params\n",
" H, = state\n",
" outputs = []\n",
" for X in inputs:\n",
" H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)\n",
" Y = torch.matmul(H, W_hq) + b_q\n",
" outputs.append(Y)\n",
" return outputs, (H,)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5 torch.Size([2, 1027]) torch.Size([2, 256])\n"
]
}
],
"source": [
"state = init_rnn_state(X.shape[0], num_hiddens, device)\n",
"inputs = to_onehot(X.to(device), vocab_size)\n",
"params = get_params()\n",
"outputs, state_new = rnn(inputs, state, params)\n",
"print(len(outputs), outputs[0].shape, state_new[0].shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.4.4 定义预测函数"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# 本函数已保存在d2lzh_pytorch包中方便以后使用\n",
"def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,\n",
" num_hiddens, vocab_size, device, idx_to_char, char_to_idx):\n",
" state = init_rnn_state(1, num_hiddens, device)\n",
" output = [char_to_idx[prefix[0]]]\n",
" for t in range(num_chars + len(prefix) - 1):\n",
" # 将上一时间步的输出作为当前时间步的输入\n",
" X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)\n",
" # 计算输出和更新隐藏状态\n",
" (Y, state) = rnn(X, state, params)\n",
" # 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符\n",
" if t < len(prefix) - 1:\n",
" output.append(char_to_idx[prefix[t + 1]])\n",
" else:\n",
" output.append(int(Y[0].argmax(dim=1).item()))\n",
" return ''.join([idx_to_char[i] for i in output])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'分开西圈绪升王凝瓜必客映'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,\n",
" device, idx_to_char, char_to_idx)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.4.5 裁剪梯度"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# 本函数已保存在d2lzh_pytorch包中方便以后使用\n",
"def grad_clipping(params, theta, device):\n",
" norm = torch.tensor([0.0], device=device)\n",
" for param in params:\n",
" norm += (param.grad.data ** 2).sum()\n",
" norm = norm.sqrt().item()\n",
" if norm > theta:\n",
" for param in params:\n",
" param.grad.data *= (theta / norm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.4.6 困惑度\n",
"## 6.4.7 定义模型训练函数"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# 本函数已保存在d2lzh_pytorch包中方便以后使用\n",
"def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,\n",
" vocab_size, device, corpus_indices, idx_to_char,\n",
" char_to_idx, is_random_iter, num_epochs, num_steps,\n",
" lr, clipping_theta, batch_size, pred_period,\n",
" pred_len, prefixes):\n",
" if is_random_iter:\n",
" data_iter_fn = d2l.data_iter_random\n",
" else:\n",
" data_iter_fn = d2l.data_iter_consecutive\n",
" params = get_params()\n",
" loss = nn.CrossEntropyLoss()\n",
"\n",
" for epoch in range(num_epochs):\n",
" if not is_random_iter: # 如使用相邻采样在epoch开始时初始化隐藏状态\n",
" state = init_rnn_state(batch_size, num_hiddens, device)\n",
" l_sum, n, start = 0.0, 0, time.time()\n",
" data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)\n",
" for X, Y in data_iter:\n",
" if is_random_iter: # 如使用随机采样,在每个小批量更新前初始化隐藏状态\n",
" state = init_rnn_state(batch_size, num_hiddens, device)\n",
" else: # 否则需要使用detach函数从计算图分离隐藏状态\n",
" for s in state:\n",
" s.detach_()\n",
" \n",
" inputs = to_onehot(X, vocab_size)\n",
" # outputs有num_steps个形状为(batch_size, vocab_size)的矩阵\n",
" (outputs, state) = rnn(inputs, state, params)\n",
" # 拼接之后形状为(num_steps * batch_size, vocab_size)\n",
" outputs = torch.cat(outputs, dim=0)\n",
" # Y的形状是(batch_size, num_steps),转置后再变成长度为\n",
" # batch * num_steps 的向量,这样跟输出的行一一对应\n",
" y = torch.transpose(Y, 0, 1).contiguous().view(-1)\n",
" # 使用交叉熵损失计算平均分类误差\n",
" l = loss(outputs, y.long())\n",
" \n",
" # 梯度清0\n",
" if params[0].grad is not None:\n",
" for param in params:\n",
" param.grad.data.zero_()\n",
" l.backward()\n",
" grad_clipping(params, clipping_theta, device) # 裁剪梯度\n",
" d2l.sgd(params, lr, 1) # 因为误差已经取过均值,梯度不用再做平均\n",
" l_sum += l.item() * y.shape[0]\n",
" n += y.shape[0]\n",
"\n",
" if (epoch + 1) % pred_period == 0:\n",
" print('epoch %d, perplexity %f, time %.2f sec' % (\n",
" epoch + 1, math.exp(l_sum / n), time.time() - start))\n",
" for prefix in prefixes:\n",
" print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,\n",
" num_hiddens, vocab_size, device, idx_to_char, char_to_idx))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6.4.8 训练模型并创作歌词"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2\n",
"pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 50, perplexity 70.039647, time 0.11 sec\n",
" - 分开 我不要再想 我不能 想你的让我 我的可 你怎么 一颗四 一颗四 我不要 一颗两 一颗四 一颗四 我\n",
" - 不分开 我不要再 你你的外 在人 别你的让我 狂的可 语人两 我不要 一颗两 一颗四 一颗四 我不要 一\n",
"epoch 100, perplexity 9.726828, time 0.12 sec\n",
" - 分开 一直的美栈人 一起看 我不要好生活 你知不觉 我已好好生活 我知道好生活 后知不觉 我跟了这生活 \n",
" - 不分开堡 我不要再想 我不 我不 我不要再想你 不知不觉 你已经离开我 不知不觉 我跟了好生活 我知道好生\n",
"epoch 150, perplexity 2.864874, time 0.11 sec\n",
" - 分开 一只会停留 有不它元羞 这蝪什么奇怪的事都有 包括像猫的狗 印地安老斑鸠 平常话不多 除非是乌鸦抢\n",
" - 不分开扫 我不你再想 我不能再想 我不 我不 我不要再想你 不知不觉 你已经离开我 不知不觉 我跟了这节奏\n",
"epoch 200, perplexity 1.597790, time 0.11 sec\n",
" - 分开 有杰伦 干 载颗拳满的让空美空主 相爱还有个人 再狠狠忘记 你爱过我的证 有晶莹的手滴 让说些人\n",
" - 不分开扫 我叫你爸 你打我妈 这样对吗干嘛这样 何必让它牵鼻子走 瞎 说底牵打我妈要 难道球耳 快使用双截\n",
"epoch 250, perplexity 1.303903, time 0.12 sec\n",
" - 分开 有杰人开留 仙唱它怕羞 蜥蝪横著走 这里什么奇怪的事都有 包括像猫的狗 印地安老斑鸠 平常话不多 \n",
" - 不分开简 我不能再想 我不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不能\n"
]
}
],
"source": [
"train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,\n",
" vocab_size, device, corpus_indices, idx_to_char,\n",
" char_to_idx, True, num_epochs, num_steps, lr,\n",
" clipping_theta, batch_size, pred_period, pred_len,\n",
" prefixes)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch 50, perplexity 59.514416, time 0.11 sec\n",
" - 分开 我想要这 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空\n",
" - 不分开 我不要这 全使了双 我想了这 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空 我想了空\n",
"epoch 100, perplexity 6.801417, time 0.11 sec\n",
" - 分开 我说的这样笑 想你都 不着我 我想就这样牵 你你的回不笑多难的 它在云实 有一条事 全你了空 \n",
" - 不分开觉 你已经离开我 不知不觉 我跟好这节活 我该好好生活 不知不觉 你跟了离开我 不知不觉 我跟好这节\n",
"epoch 150, perplexity 2.063730, time 0.16 sec\n",
" - 分开 我有到这样牵着你的手不放开 爱可不可以简简单单没有伤 古有你烦 我有多烦恼向 你知带悄 回我的外\n",
" - 不分开觉 你已经很个我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后哼哈兮 快使用双截棍 哼哼哈兮 \n",
"epoch 200, perplexity 1.300031, time 0.11 sec\n",
" - 分开 我想要这样牵着你的手不放开 爱能不能够永远单甜没有伤害 你 靠着我的肩膀 你 在我胸口睡著 像这样\n",
" - 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生\n",
"epoch 250, perplexity 1.164455, time 0.11 sec\n",
" - 分开 我有一这样布 对你依依不舍 连隔壁邻居都猜到我现在的感受 河边的风 在吹着头发飘动 牵着你的手 一\n",
" - 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生\n"
]
}
],
"source": [
"train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,\n",
" vocab_size, device, corpus_indices, idx_to_char,\n",
" char_to_idx, False, num_epochs, num_steps, lr,\n",
" clipping_theta, batch_size, pred_period, pred_len,\n",
" prefixes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}