You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

449 lines
12 KiB

3 years ago
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.4.1\n"
]
}
],
"source": [
"import torch\n",
"\n",
"print(torch.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2.3 自动求梯度\n",
"## 2.3.1 概念\n",
"上一节介绍的`Tensor`是这个包的核心类,如果将其属性`.requires_grad`设置为`True`,它将开始追踪(track)在其上的所有操作。完成计算后,可以调用`.backward()`来完成所有梯度计算。此`Tensor`的梯度将累积到`.grad`属性中。\n",
"> 注意在调用`.backward()`时,如果`Tensor`是标量,则不需要为`backward()`指定任何参数;否则,需要指定一个求导变量。\n",
"\n",
"如果不想要被继续追踪,可以调用`.detach()`将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪。此外,还可以用`with torch.no_grad()`将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(`requires_grad=True`)的梯度。\n",
"\n",
"`Function`是另外一个很重要的类。`Tensor`和`Function`互相结合就可以构建一个记录有整个计算过程的非循环图。每个`Tensor`都有一个`.grad_fn`属性,该属性即创建该`Tensor`的`Function`(除非用户创建的`Tensor`s时设置了`grad_fn=None`)。\n",
"\n",
"下面通过一些例子来理解这些概念。\n",
"\n",
"## 2.3.2 `Tensor`"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[1., 1.],\n",
" [1., 1.]], requires_grad=True)\n",
"None\n"
]
}
],
"source": [
"x = torch.ones(2, 2, requires_grad=True)\n",
"print(x)\n",
"print(x.grad_fn)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[3., 3.],\n",
" [3., 3.]], grad_fn=<AddBackward>)\n",
"<AddBackward object at 0x10ed634a8>\n"
]
}
],
"source": [
"y = x + 2\n",
"print(y)\n",
"print(y.grad_fn)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"注意x是直接创建的所以它没有`grad_fn`, 而y是通过一个加法操作创建的所以它有一个为`<AddBackward>`的`grad_fn`。"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True False\n"
]
}
],
"source": [
"print(x.is_leaf, y.is_leaf)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[27., 27.],\n",
" [27., 27.]], grad_fn=<MulBackward>) tensor(27., grad_fn=<MeanBackward1>)\n"
]
}
],
"source": [
"z = y * y * 3\n",
"out = z.mean()\n",
"print(z, out)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"通过`.requires_grad_()`来用in-place的方式改变`requires_grad`属性:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"False\n",
"True\n",
"<SumBackward0 object at 0x10ed63c50>\n"
]
}
],
"source": [
"a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False\n",
"a = ((a * 3) / (a - 1))\n",
"print(a.requires_grad) # False\n",
"a.requires_grad_(True)\n",
"print(a.requires_grad) # True\n",
"b = (a * a).sum()\n",
"print(b.grad_fn)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.3.3 梯度 \n",
"\n",
"因为`out`是一个标量,所以调用`backward()`时不需要指定求导变量:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[4.5000, 4.5000],\n",
" [4.5000, 4.5000]])\n"
]
}
],
"source": [
"out.backward() # 等价于 out.backward(torch.tensor(1.))\n",
"print(x.grad)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"我们令`out`为 $o$ , 因为\n",
"$$\n",
"o=\\frac14\\sum_{i=1}^4z_i=\\frac14\\sum_{i=1}^43(x_i+2)^2\n",
"$$\n",
"所以\n",
"$$\n",
"\\frac{\\partial{o}}{\\partial{x_i}}\\bigr\\rvert_{x_i=1}=\\frac{9}{2}=4.5\n",
"$$\n",
"所以上面的输出是正确的。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"数学上,如果有一个函数值和自变量都为向量的函数 $\\vec{y}=f(\\vec{x})$, 那么 $\\vec{y}$ 关于 $\\vec{x}$ 的梯度就是一个雅可比矩阵Jacobian matrix:\n",
"\n",
"$$\n",
"J=\\left(\\begin{array}{ccc}\n",
" \\frac{\\partial y_{1}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{1}}{\\partial x_{n}}\\\\\n",
" \\vdots & \\ddots & \\vdots\\\\\n",
" \\frac{\\partial y_{m}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{m}}{\\partial x_{n}}\n",
" \\end{array}\\right)\n",
"$$\n",
"\n",
"而``torch.autograd``这个包就是用来计算一些雅克比矩阵的乘积的。例如,如果 $v$ 是一个标量函数的 $l=g\\left(\\vec{y}\\right)$ 的梯度:\n",
"\n",
"$$\n",
"v=\\left(\\begin{array}{ccc}\\frac{\\partial l}{\\partial y_{1}} & \\cdots & \\frac{\\partial l}{\\partial y_{m}}\\end{array}\\right)\n",
"$$\n",
"\n",
"那么根据链式法则我们有 $l$ 关于 $\\vec{x}$ 的雅克比矩阵就为:\n",
"\n",
"$$\n",
"v \\cdot J=\\left(\\begin{array}{ccc}\\frac{\\partial l}{\\partial y_{1}} & \\cdots & \\frac{\\partial l}{\\partial y_{m}}\\end{array}\\right) \\left(\\begin{array}{ccc}\n",
" \\frac{\\partial y_{1}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{1}}{\\partial x_{n}}\\\\\n",
" \\vdots & \\ddots & \\vdots\\\\\n",
" \\frac{\\partial y_{m}}{\\partial x_{1}} & \\cdots & \\frac{\\partial y_{m}}{\\partial x_{n}}\n",
" \\end{array}\\right)=\\left(\\begin{array}{ccc}\\frac{\\partial l}{\\partial x_{1}} & \\cdots & \\frac{\\partial l}{\\partial x_{n}}\\end{array}\\right)\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"注意grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[5.5000, 5.5000],\n",
" [5.5000, 5.5000]])\n",
"tensor([[1., 1.],\n",
" [1., 1.]])\n"
]
}
],
"source": [
"# 再来反向传播一次注意grad是累加的\n",
"out2 = x.sum()\n",
"out2.backward()\n",
"print(x.grad)\n",
"\n",
"out3 = x.sum()\n",
"x.grad.data.zero_()\n",
"out3.backward()\n",
"print(x.grad)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[2., 4.],\n",
" [6., 8.]], grad_fn=<ViewBackward>)\n"
]
}
],
"source": [
"x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)\n",
"y = 2 * x\n",
"z = y.view(2, 2)\n",
"print(z)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"现在 `y` 不是一个标量,所以在调用`backward`时需要传入一个和`y`同形的权重向量进行加权求和得到一个标量。"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([2.0000, 0.2000, 0.0200, 0.0020])\n"
]
}
],
"source": [
"v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)\n",
"z.backward(v)\n",
"\n",
"print(x.grad)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"再来看看中断梯度追踪的例子:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(1., requires_grad=True) True\n",
"tensor(1., grad_fn=<PowBackward0>) True\n",
"tensor(1.) False\n",
"tensor(2., grad_fn=<ThAddBackward>) True\n"
]
}
],
"source": [
"x = torch.tensor(1.0, requires_grad=True)\n",
"y1 = x ** 2 \n",
"with torch.no_grad():\n",
" y2 = x ** 3\n",
"y3 = y1 + y2\n",
" \n",
"print(x, x.requires_grad)\n",
"print(y1, y1.requires_grad)\n",
"print(y2, y2.requires_grad)\n",
"print(y3, y3.requires_grad)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(2.)\n"
]
}
],
"source": [
"y3.backward()\n",
"print(x.grad)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"为什么是2呢$ y_3 = y_1 + y_2 = x^2 + x^3$,当 $x=1$ 时 $\\frac {dy_3} {dx}$ 不应该是5吗事实上由于 $y_2$ 的定义是被`torch.no_grad():`包裹的,所以与 $y_2$ 有关的梯度是不会回传的,只有与 $y_1$ 有关的梯度才会回传,即 $x^2$ 对 $x$ 的梯度。\n",
"\n",
"上面提到,`y2.requires_grad=False`,所以不能调用 `y2.backward()`。"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# y2.backward() # 会报错 RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"如果我们想要修改`tensor`的数值,但是又不希望被`autograd`记录(即不会影响反向传播),那么我么可以对`tensor.data`进行操作."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([1.])\n",
"False\n",
"tensor([100.], requires_grad=True)\n",
"tensor([2.])\n"
]
}
],
"source": [
"x = torch.ones(1,requires_grad=True)\n",
"\n",
"print(x.data) # 还是一个tensor\n",
"print(x.data.requires_grad) # 但是已经是独立于计算图之外\n",
"\n",
"y = 2 * x\n",
"x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播\n",
"\n",
"y.backward()\n",
"print(x) # 更改data的值也会影响tensor的值\n",
"print(x.grad)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}